Difference between revisions of "cpp/container/priority queue"
m (link to pl) |
m (Text replace - "{{concept" to "{{named req") |
||
Line 18: | Line 18: | ||
{{par begin}} | {{par begin}} | ||
{{par | T | The type of the stored elements. {{rev inl|since=c++17|The behavior is undefined if {{tt|T}} is not the same type as {{tt|Container::value_type}}.}} }} | {{par | T | The type of the stored elements. {{rev inl|since=c++17|The behavior is undefined if {{tt|T}} is not the same type as {{tt|Container::value_type}}.}} }} | ||
− | {{par | Container | The type of the underlying container to use to store the elements. The container must satisfy the requirements of {{ | + | {{par | Container | The type of the underlying container to use to store the elements. The container must satisfy the requirements of {{named req|SequenceContainer}}, and its iterators must satisfy the requirements of {{named req|RandomAccessIterator}}. Additionally, it must provide the following functions with the usual semantics: |
* {{tt|front()}} | * {{tt|front()}} | ||
Line 25: | Line 25: | ||
The standard containers {{lc|std::vector}} and {{lc|std::deque}} satisfy these requirements.}} | The standard containers {{lc|std::vector}} and {{lc|std::deque}} satisfy these requirements.}} | ||
− | {{par | Compare | A {{ | + | {{par | Compare | A {{named req|Compare}} type providing a strict weak ordering.}} |
{{par end}} | {{par end}} | ||
− | Note that the {{ | + | Note that the {{named req|Compare}} parameter is defined such that it returns {{c|true}} if its first argument comes ''before'' its second argument in a weak ordering. But because the priority queue outputs largest elements first, the elements that "come before" are actually output last. That is, the front of the queue contains the "last" element according to the weak ordering imposed by {{named req|Compare}}. |
===Member types=== | ===Member types=== |
Revision as of 14:14, 15 June 2018
Defined in header <queue>
|
||
template< class T, |
||
A priority queue is a container adaptor that provides constant time lookup of the largest (by default) element, at the expense of logarithmic insertion and extraction.
A user-provided Compare
can be supplied to change the ordering, e.g. using std::greater<T> would cause the smallest element to appear as the top().
Working with a priority_queue
is similar to managing a heap in some random access container, with the benefit of not being able to accidentally invalidate the heap.
Contents |
Template parameters
T | - | The type of the stored elements. The behavior is undefined if T is not the same type as Container::value_type .(since C++17)
|
Container | - | The type of the underlying container to use to store the elements. The container must satisfy the requirements of SequenceContainer, and its iterators must satisfy the requirements of LegacyRandomAccessIterator. Additionally, it must provide the following functions with the usual semantics:
The standard containers std::vector and std::deque satisfy these requirements. |
Compare | - | A Compare type providing a strict weak ordering. |
Note that the Compare parameter is defined such that it returns true if its first argument comes before its second argument in a weak ordering. But because the priority queue outputs largest elements first, the elements that "come before" are actually output last. That is, the front of the queue contains the "last" element according to the weak ordering imposed by Compare.
Member types
Member type | Definition |
container_type
|
Container
|
value_compare (C++17)
|
Compare
|
value_type
|
Container::value_type
|
size_type
|
Container::size_type |
reference
|
Container::reference
|
const_reference
|
Container::const_reference
|
Member functions
constructs the priority_queue (public member function) | |
destructs the priority_queue (public member function) | |
assigns values to the container adaptor (public member function) | |
Element access | |
accesses the top element (public member function) | |
Capacity | |
checks whether the container adaptor is empty (public member function) | |
returns the number of elements (public member function) | |
Modifiers | |
inserts element and sorts the underlying container (public member function) | |
(C++11) |
constructs element in-place and sorts the underlying container (public member function) |
removes the top element (public member function) | |
(C++11) |
swaps the contents (public member function) |
Member objects | |
Container c |
the underlying container (protected member object) |
Compare comp |
the comparison function object (protected member object) |
Non-member functions
specializes the std::swap algorithm (function template) |
Helper classes
specializes the std::uses_allocator type trait (class template specialization) |
Deduction guides(since C++17)
Example
#include <functional> #include <queue> #include <vector> #include <iostream> template<typename T> void print_queue(T& q) { while(!q.empty()) { std::cout << q.top() << " "; q.pop(); } std::cout << '\n'; } int main() { std::priority_queue<int> q; for(int n : {1,8,5,6,3,4,0,9,7,2}) q.push(n); print_queue(q); std::priority_queue<int, std::vector<int>, std::greater<int> > q2; for(int n : {1,8,5,6,3,4,0,9,7,2}) q2.push(n); print_queue(q2); // Using lambda to compare elements. auto cmp = [](int left, int right) { return (left ^ 1) < (right ^ 1);}; std::priority_queue<int, std::vector<int>, decltype(cmp)> q3(cmp); for(int n : {1,8,5,6,3,4,0,9,7,2}) q3.push(n); print_queue(q3); }
Output:
9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 8 9 6 7 4 5 2 3 0 1