Difference between revisions of "cpp/numeric/ratio/ratio multiply"
(Fix wording) |
(since=c++11) |
||
Line 3: | Line 3: | ||
{{dcl begin}} | {{dcl begin}} | ||
{{dcl header | ratio}} | {{dcl header | ratio}} | ||
− | {{dcl | 1= | + | {{dcl | since=c++11 | 1= |
template< class R1, class R2 > | template< class R1, class R2 > | ||
using ratio_multiply = /* see below */; | using ratio_multiply = /* see below */; |
Revision as of 01:00, 23 August 2018
Defined in header <ratio>
|
||
template< class R1, class R2 > using ratio_multiply = /* see below */; |
(since C++11) | |
The alias template std::ratio_multiply
denotes the result of multiplying two exact rational fractions represented by the std::ratio specializations R1
and R2
.
The result is a std::ratio specialization std::ratio<U, V>, such that given Num == R1::num * R2::num and Denom == R1::den * R2::den (computed without arithmetic overflow), U
is std::ratio<Num, Denom>::num and V
is std::ratio<Num, Denom>::den.
Notes
If U
or V
is not representable in std::intmax_t
, the program is ill-formed. If Num
or Denom
is not representable in std::intmax_t
, the program is ill-formed unless the implementation yields correct values for U
and V
.
The above definition requires that the result of std::ratio_multiply<R1, R2> be already reduced to lowest terms; for example, std::ratio_multiply<std::ratio<1, 6>, std::ratio<4, 5>> is the same type as std::ratio<2, 15>.
Example
#include <iostream> #include <ratio> int main() { typedef std::ratio<2, 3> two_third; typedef std::ratio<1, 6> one_sixth; typedef std::ratio_multiply<two_third, one_sixth> r; std::cout << "2/3 * 1/6 = " << r::num << '/' << r::den << '\n'; }
Output:
2/3 * 1/6 = 1/9