Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/types/disjunction"

From cppreference.com
< cpp‎ | types
(~)
m (the variable template is also considered)
Line 19: Line 19:
 
Disjunction is short-circuiting: if there is a template type argument {{tt|Bi}} with {{c|1=bool(Bi::value) != false}}, then instantiating {{c|disjunction<B1, ..., BN>::value}} does not require the instantiation of {{c|Bj::value}} for {{tt|j > i}}
 
Disjunction is short-circuiting: if there is a template type argument {{tt|Bi}} with {{c|1=bool(Bi::value) != false}}, then instantiating {{c|disjunction<B1, ..., BN>::value}} does not require the instantiation of {{c|Bj::value}} for {{tt|j > i}}
  
{{cpp/types/nospec}}
+
{{cpp/types/nospec|pv}}
  
 
===Template parameters===
 
===Template parameters===
Line 98: Line 98:
 
{{dsc end}}
 
{{dsc end}}
  
[[de:cpp/types/disjunction]]
+
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}
[[es:cpp/types/disjunction]]
+
[[fr:cpp/types/disjunction]]
+
[[it:cpp/types/disjunction]]
+
[[ja:cpp/types/disjunction]]
+
[[pt:cpp/types/disjunction]]
+
[[ru:cpp/types/disjunction]]
+
[[zh:cpp/types/disjunction]]
+

Revision as of 09:02, 25 January 2020

 
 
Utilities library
General utilities
Relational operators (deprecated in C++20)
 
 
Defined in header <type_traits>
template<class... B>
struct disjunction;
(1) (since C++17)

Forms the logical disjunction of the type traits B..., effectively performing a logical OR on the sequence of traits.

The specialization std::disjunction<B1, ..., BN> has a public and unambiguous base that is

  • if sizeof...(B) == 0, std::false_type; otherwise
  • the first type Bi in B1, ..., BN for which bool(Bi::value) == true, or BN if there is no such type.

The member names of the base class, other than disjunction and operator=, are not hidden and are unambiguously available in disjunction.

Disjunction is short-circuiting: if there is a template type argument Bi with bool(Bi::value) != false, then instantiating disjunction<B1, ..., BN>::value does not require the instantiation of Bj::value for j > i

If the program adds specializations for std::disjunction or std::disjunction_v, the behavior is undefined.

Contents

Template parameters

B... - every template argument Bi for which Bi::value is instantiated must be usable as a base class and define member value that is convertible to bool

Helper variable template

template<class... B>
inline constexpr bool disjunction_v = disjunction<B...>::value;
(since C++17)

Possible implementation

template<class...> struct disjunction : std::false_type { };
template<class B1> struct disjunction<B1> : B1 { };
template<class B1, class... Bn>
struct disjunction<B1, Bn...> 
    : std::conditional_t<bool(B1::value), B1, disjunction<Bn...>>  { };

Notes

A specialization of disjunction does not necessarily inherit from of either std::true_type or std::false_type: it simply inherits from the first B whose ::value, explicitly converted to bool, is true, or from the very last B when all of them convert to false. For example, std::disjunction<std::integral_constant<int, 2>, std::integral_constant<int, 4>>::value is 2.

The short-circuit instantiation differentiates disjunction from fold expressions: a fold expression like (... || Bs::value) instantiates every B in Bs, while std::disjunction_v<Bs...> stops instantiation once the value can be determined. This is particularly useful if the later type is expensive to instantiate or can cause a hard error when instantiated with the wrong type.

Example

#include <type_traits>
#include <string>
 
// checking if Foo is constructible from double will cause a hard error
struct Foo {
    template<class T>
    struct sfinae_unfriendly_check { static_assert(!std::is_same_v<T, double>); };
 
    template<class T>
    Foo(T, sfinae_unfriendly_check<T> = {} );
};
 
template<class... Ts>
struct first_constructible {
    template<class T, class...Args>
    struct is_constructible_x : std::is_constructible<T, Args...> {
        using type = T;
    };
    struct fallback {
        static constexpr bool value = true;
        using type = void; // type to return if nothing is found
    };
 
    template<class... Args>
    using with = typename std::disjunction<is_constructible_x<Ts, Args...>...,
                                           fallback>::type;
};
 
// OK, is_constructible<Foo, double> not instantiated
static_assert(std::is_same_v<first_constructible<std::string, int, Foo>::with<double>,
                             int>);
 
static_assert(std::is_same_v<first_constructible<std::string, int>::with<>, std::string>);
static_assert(std::is_same_v<first_constructible<std::string, int>::with<const char*>,
                             std::string>);
static_assert(std::is_same_v<first_constructible<std::string, int>::with<void*>, void>);
 
int main() { }

See also

(C++17)
logical NOT metafunction
(class template) [edit]
variadic logical AND metafunction
(class template) [edit]