Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/memory/unique ptr/make unique"

From cppreference.com
< cpp‎ | memory‎ | unique ptr
m (E: -= def.cons, ~= init.cons)
m (Example: ~)
Line 125: Line 125:
 
{
 
{
 
     int x, y, z;
 
     int x, y, z;
     Vec3(int x = 0, int y = 0, int z = 0) :x(x), y(y), z(z) { }
+
    // following constructor is no longer needed since C++20
     friend std::ostream& operator<<(std::ostream& os, Vec3& v) {
+
     Vec3(int x = 0, int y = 0, int z = 0) noexcept : x(x), y(y), z(z) { }
 +
     friend std::ostream& operator<<(std::ostream& os, const Vec3& v)
 +
    {
 
         return os << '{' << "x:" << v.x << " y:" << v.y << " z:" << v.z  << '}';
 
         return os << '{' << "x:" << v.x << " y:" << v.y << " z:" << v.z  << '}';
 
     }
 
     }

Revision as of 20:49, 10 June 2020

 
 
Utilities library
General utilities
Relational operators (deprecated in C++20)
 
Dynamic memory management
Uninitialized memory algorithms
Constrained uninitialized memory algorithms
Allocators
Garbage collection support
(C++11)(until C++23)
(C++11)(until C++23)
(C++11)(until C++23)
(C++11)(until C++23)
(C++11)(until C++23)
(C++11)(until C++23)



 
 
Defined in header <memory>
template< class T, class... Args >
unique_ptr<T> make_unique( Args&&... args );
(1) (since C++14)
(only for non-array types)
template< class T >
unique_ptr<T> make_unique( std::size_t size );
(2) (since C++14)
(only for array types with unknown bound)
template< class T, class... Args >
/* unspecified */ make_unique( Args&&... args ) = delete;
(3) (since C++14)
(only for array types with known bound)
template< class T  >
unique_ptr<T> make_unique_for_overwrite( );
(4) (since C++20)
(only for non-array types)
template< class T >
unique_ptr<T> make_unique_for_overwrite( std::size_t size );
(5) (since C++20)
(only for array types with unknown bound)
template< class T, class... Args >
/* unspecified */ make_unique_for_overwrite( Args&&... args ) = delete;
(6) (since C++20)
(only for array types with known bound)

Constructs an object of type T and wraps it in a std::unique_ptr.

1) Constructs a non-array type T. The arguments args are passed to the constructor of T. This overload participates in overload resolution only if T is not an array type. The function is equivalent to:
unique_ptr<T>(new T(std::forward<Args>(args)...))
2) Constructs an array of unknown bound T. This overload participates in overload resolution only if T is an array of unknown bound. The function is equivalent to:
unique_ptr<T>(new typename std::remove_extent<T>::type[size]())
3,6) Construction of arrays of known bound is disallowed.
4) Same as (1), except that the object is default-initialized. This overload participates in overload resolution only if T is not an array type. The function is equivalent to:
unique_ptr<T>(new T)
5) Same as (2), except that the array is default-initialized. This overload participates in overload resolution only if T is an array of unknown bound. The function is equivalent to:
unique_ptr<T>(new typename std::remove_extent<T>::type[size])

Contents

Parameters

args - list of arguments with which an instance of T will be constructed.
size - the size of the array to construct

Return value

std::unique_ptr of an instance of type T.

Exceptions

May throw std::bad_alloc or any exception thrown by the constructor of T. If an exception is thrown, this function has no effect.

Possible Implementation

First version
// C++14 make_unique
namespace detail {
template<class>
static constexpr bool is_unbounded_array_v = false;
template<class T>
static constexpr bool is_unbounded_array_v<T[]> = true;
 
template<class>
static constexpr bool is_bounded_array_v = false;
template<class T, std::size_t N>
static constexpr bool is_bounded_array_v<T[N]> = true;
} // namespace detail
 
template<class T, class... Args>
std::enable_if_t<!std::is_array<T>::value, std::unique_ptr<T>>
make_unique(Args&&... args)
{
    return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
 
template<class T>
std::enable_if_t<detail::is_unbounded_array_v<T>, std::unique_ptr<T>>
make_unique(std::size_t n)
{
    return std::unique_ptr<T>(new std::remove_extent_t<T>[n]());
}
 
template<class T, class... Args>
std::enable_if_t<detail::is_bounded_array_v<T>> make_unique(Args&&...) = delete;
Second version
// C++20 make_unique_for_overwrite
template<class T>
    requires !std::is_array_v<T>
std::unique_ptr<T> make_unique_for_overwrite()
{
    return std::unique_ptr<T>(new T);
}
 
template<class T, std::size_t N>
    requires std::is_unbounded_array_v<T>
std::unique_ptr<T> make_unique_for_overwrite(std::size_t n)
{
    return std::unique_ptr<T>(new std::remove_extent_t<T>[n]);
}
 
template<class T, class... Args>
    requires std::is_bounded_array_v<T>
void make_unique_for_overwrite(Args&&...) = delete;

Notes

Unlike std::make_shared (which has std::allocate_shared), std::make_unique does not have an allocator-aware counterpart. allocate_unique proposed in P0211 would be required to invent the deleter type D for the unique_ptr<T,D> it returns which would contain an allocator object and invoke both destroy and deallocate in its operator().

Example

#include <iostream>
#include <memory>
 
struct Vec3
{
    int x, y, z;
    // following constructor is no longer needed since C++20
    Vec3(int x = 0, int y = 0, int z = 0) noexcept : x(x), y(y), z(z) { }
    friend std::ostream& operator<<(std::ostream& os, const Vec3& v)
    {
        return os << '{' << "x:" << v.x << " y:" << v.y << " z:" << v.z  << '}';
    }
};
 
int main()
{
    // Use the default constructor.
    std::unique_ptr<Vec3> v1 = std::make_unique<Vec3>();
    // Use the constructor that matches these arguments
    std::unique_ptr<Vec3> v2 = std::make_unique<Vec3>(0, 1, 2);
    // Create a unique_ptr to an array of 5 elements
    std::unique_ptr<Vec3[]> v3 = std::make_unique<Vec3[]>(5);
 
    std::cout << "make_unique<Vec3>():      " << *v1 << '\n'
              << "make_unique<Vec3>(0,1,2): " << *v2 << '\n'
              << "make_unique<Vec3[]>(5):   " << '\n';
    for (int i = 0; i < 5; i++) {
        std::cout << "     " << v3[i] << '\n';
    }
}

Output:

make_unique<Vec3>():      {x:0 y:0 z:0}
make_unique<Vec3>(0,1,2): {x:0 y:1 z:2}
make_unique<Vec3[]>(5):   
     {x:0 y:0 z:0}
     {x:0 y:0 z:0}
     {x:0 y:0 z:0}
     {x:0 y:0 z:0}
     {x:0 y:0 z:0}

See also

constructs a new unique_ptr
(public member function) [edit]
creates a shared pointer that manages a new object
(function template) [edit]