Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/constants"

From cppreference.com
< cpp‎ | numeric
m (Added Spanish link)
(+ example)
Line 40: Line 40:
  
 
A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a program-defined type.
 
A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a program-defined type.
 +
 +
===Example===
 +
{{example||code=
 +
#include <numbers>
 +
#include <cmath>
 +
#include <iostream>
 +
 +
int main()
 +
{
 +
    using namespace std::numbers;
 +
 +
    std::cout
 +
        << std::pow(e, ln2) / 2 << ' '
 +
        << std::pow(std::cosh(pi), 2) - std::pow(std::sinh(pi), 2) << ' '
 +
        << std::sqrt(pi) * inv_sqrtpi << ' '
 +
        << std::pow(sqrt2 * sqrt3, 2) / 6 << ' '
 +
        << sqrt3 * inv_sqrt3 << ' '
 +
        << log2e * ln2 << ' '
 +
        << log10e * ln10 << ' '
 +
        << pi * inv_pi << ' '
 +
        << phi * phi - phi << '\n';
 +
 +
    auto egamma_aprox = [] {
 +
        long double s = 0, m = 2.0;
 +
        for (unsigned c = 2; c != 1'000'000; ++c, ++m) {
 +
            const long double t = std::riemann_zeta(m) / m;
 +
            (c & 1) == 0 ? s += t : s -= t;
 +
        }
 +
        return s;
 +
    };
 +
 +
    std::cout << std::fixed << (egamma_aprox() - egamma_v<long double>) << '\n';
 +
}
 +
|p=true
 +
|output=
 +
1 1 1 1 1 1 1 1 1
 +
-0.000001
 +
}}
  
 
{{langlinks|es|ja|zh}}
 
{{langlinks|es|ja|zh}}

Revision as of 17:21, 4 October 2020

 
 
 
Mathematical constants
 

Constants (since C++20)

Defined in header <numbers>
Defined in namespace std::numbers
e_v
the mathematical constant e
(variable template)
log2e_v
log2e
(variable template)
log10e_v
log10e
(variable template)
pi_v
π
(variable template)
inv_pi_v
1
π

(variable template)
inv_sqrtpi_v
1
π

(variable template)
ln2_v
ln 2
(variable template)
ln10_v
ln 10
(variable template)
sqrt2_v
2
(variable template)
sqrt3_v
3
(variable template)
inv_sqrt3_v
1
3

(variable template)
egamma_v
the Euler–Mascheroni constant
(variable template)
phi_v
the golden ratio Φ constant (
1 + 5
2
)
(variable template)
inline constexpr double e
e_v<double>
(constant)
inline constexpr double log2e
log2e_v<double>
(constant)
inline constexpr double log10e
log10e_v<double>
(constant)
inline constexpr double pi
pi_v<double>
(constant)
inline constexpr double inv_pi
inv_pi_v<double>
(constant)
inline constexpr double inv_sqrtpi
inv_sqrtpi_v<double>
(constant)
inline constexpr double ln2
ln2_v<double>
(constant)
inline constexpr double ln10
ln10_v<double>
(constant)
inline constexpr double sqrt2
sqrt2_v<double>
(constant)
inline constexpr double sqrt3
sqrt3_v<double>
(constant)
inline constexpr double inv_sqrt3
inv_sqrt3_v<double>
(constant)
inline constexpr double egamma
egamma_v<double>
(constant)
inline constexpr double phi
phi_v<double>
(constant)

Notes

A program that instantiates a primary template of a mathematical constant variable template is ill-formed.

The standard library specializes mathematical constant variable templates for all floating-point types (i.e. float, double and long double).

A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a program-defined type.

Example

#include <numbers>
#include <cmath>
#include <iostream>
 
int main()
{
    using namespace std::numbers;
 
    std::cout
        << std::pow(e, ln2) / 2 << ' '
        << std::pow(std::cosh(pi), 2) - std::pow(std::sinh(pi), 2) << ' '
        << std::sqrt(pi) * inv_sqrtpi << ' '
        << std::pow(sqrt2 * sqrt3, 2) / 6 << ' '
        << sqrt3 * inv_sqrt3 << ' '
        << log2e * ln2 << ' '
        << log10e * ln10 << ' '
        << pi * inv_pi << ' '
        << phi * phi - phi << '\n';
 
    auto egamma_aprox = [] {
        long double s = 0, m = 2.0;
        for (unsigned c = 2; c != 1'000'000; ++c, ++m) {
            const long double t = std::riemann_zeta(m) / m;
            (c & 1) == 0 ? s += t : s -= t;
        }
        return s;
    };
 
    std::cout << std::fixed << (egamma_aprox() - egamma_v<long double>) << '\n';
}

Possible output:

1 1 1 1 1 1 1 1 1
-0.000001