Difference between revisions of "cpp/numeric/special functions/riemann zeta"
m (→Example: + π from <numbers>(C++20). Btw, the previous edit of #Return value is ok) |
|||
Line 43: | Line 43: | ||
#include <cmath> | #include <cmath> | ||
#include <iostream> | #include <iostream> | ||
+ | #include <numbers> | ||
+ | const auto π² = std::pow(std::numbers::pi,2); | ||
int main() | int main() | ||
{ | { | ||
Line 51: | Line 53: | ||
<< "ζ(0.5) = " << std::riemann_zeta(0.5) << '\n' | << "ζ(0.5) = " << std::riemann_zeta(0.5) << '\n' | ||
<< "ζ(2) = " << std::riemann_zeta(2) << ' ' | << "ζ(2) = " << std::riemann_zeta(2) << ' ' | ||
− | << "(π²/6 = " << | + | << "(π²/6 = " << π²/6 << ")\n"; |
} | } | ||
|output= | |output= |
Revision as of 02:51, 28 July 2021
Defined in header <cmath>
|
||
double riemann_zeta( double arg ); float riemann_zeta( float arg ); |
(1) | (since C++17) |
double riemann_zeta( IntegralType arg ); |
(2) | (since C++17) |
Contents |
Parameters
arg | - | value of a floating-point or integral type |
Return value
If no errors occur, value of the Riemann zeta function of arg
, ζ(arg), defined for the entire real axis:
- For arg>1, Σ∞n=1n-arg
- For 0≤arg≤1,
Σ∞n=1 (-1)n n-arg1 21-arg-1 - For arg<0, 2argπarg-1sin(
)Γ(1−arg)ζ(1−arg)πarg 2
Error handling
Errors may be reported as specified in math_errhandling
- If the argument is NaN, NaN is returned and domain error is not reported
Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math
Example
#include <cmath> #include <iostream> #include <numbers> const auto π² = std::pow(std::numbers::pi,2); int main() { // spot checks for well-known values std::cout << "ζ(-1) = " << std::riemann_zeta(-1) << '\n' << "ζ(0) = " << std::riemann_zeta(0) << '\n' << "ζ(1) = " << std::riemann_zeta(1) << '\n' << "ζ(0.5) = " << std::riemann_zeta(0.5) << '\n' << "ζ(2) = " << std::riemann_zeta(2) << ' ' << "(π²/6 = " << π²/6 << ")\n"; }
Output:
ζ(-1) = -0.0833333 ζ(0) = -0.5 ζ(1) = inf ζ(0.5) = -1.46035 ζ(2) = 1.64493 (π²/6 = 1.64493)
External links
Weisstein, Eric W. "Riemann Zeta Function." From MathWorld--A Wolfram Web Resource.