Difference between revisions of "cpp/numeric/math/lgamma"
m (→Return value: mathjax-or) |
m (→Return value: +HUGE_VAL lnk) |
||
Line 30: | Line 30: | ||
If no errors occur, the value of the logarithm of the gamma function of {{tt|arg}}, that is {{mathjax-or|1=\(\log_{e}{{!}}{\int_0^\infty t^{arg-1} e^{-t} \mathsf{d}t}{{!}}\)|2=log{{su|b=e}}{{!}}{{minteg|0|∞|''t''{{su|p=arg-1}} {{mexp|-t}} d''t''}}{{!}}}}, is returned. | If no errors occur, the value of the logarithm of the gamma function of {{tt|arg}}, that is {{mathjax-or|1=\(\log_{e}{{!}}{\int_0^\infty t^{arg-1} e^{-t} \mathsf{d}t}{{!}}\)|2=log{{su|b=e}}{{!}}{{minteg|0|∞|''t''{{su|p=arg-1}} {{mexp|-t}} d''t''}}{{!}}}}, is returned. | ||
− | If a pole error occurs, {{ | + | If a pole error occurs, {{lc|HUGE_VAL|+HUGE_VAL}}, {{tt|+HUGE_VALF}}, or {{tt|+HUGE_VALL}} is returned. |
− | If a range error due to overflow occurs, {{ | + | If a range error due to overflow occurs, {{lc|HUGE_VAL|±HUGE_VAL}}, {{tt|±HUGE_VALF}}, or {{tt|±HUGE_VALL}} is returned. |
===Error handling=== | ===Error handling=== |
Revision as of 10:11, 12 February 2022
Defined in header <cmath>
|
||
float lgamma ( float arg ); float lgammaf( float arg ); |
(1) | (since C++11) |
double lgamma ( double arg ); |
(2) | (since C++11) |
long double lgamma ( long double arg ); long double lgammal( long double arg ); |
(3) | (since C++11) |
double lgamma ( IntegralType arg ); |
(4) | (since C++11) |
Contents |
Parameters
arg | - | value of a floating-point or Integral type |
Return value
If no errors occur, the value of the logarithm of the gamma function of arg
, that is loge|∫∞0targ-1 e-t dt|, is returned.
If a pole error occurs, +HUGE_VAL, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF
, or ±HUGE_VALL
is returned.
Error handling
Errors are reported as specified in math_errhandling.
If arg
is zero or is an integer less than zero, a pole error may occur.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is 1, +0 is returned
- If the argument is 2, +0 is returned
- If the argument is ±0, +∞ is returned and FE_DIVBYZERO is raised
- If the argument is a negative integer, +∞ is returned and FE_DIVBYZERO is raised
- If the argument is ±∞, +∞ is returned.
- If the argument is NaN, NaN is returned
Notes
If arg
is a natural number, std::lgamma(arg) is the logarithm of the factorial of arg-1
.
The POSIX version of lgamma is not thread-safe: each execution of the function stores the sign of the gamma function of arg
in the static external variable signgam
. Some implementations provide lgamma_r
, which takes a pointer to user-provided storage for singgam as the second parameter, and is thread-safe.
There is a non-standard function named gamma
in various implementations, but its definition is inconsistent. For example, glibc and 4.2BSD version of gamma
executes lgamma
, but 4.4BSD version of gamma
executes tgamma
.
Example
#include <iostream> #include <cmath> #include <cerrno> #include <cstring> #include <cfenv> #pragma STDC FENV_ACCESS ON const double pi = std::acos(-1); int main() { std::cout << "lgamma(10) = " << std::lgamma(10) << ", log(9!) = " << std::log(2*3*4*5*6*7*8*9) << '\n' << "lgamma(0.5) = " << std::lgamma(0.5) << " , log(sqrt(pi)) = " << std::log(std::sqrt(pi)) << '\n'; // special values std::cout << "lgamma(1) = " << std::lgamma(1) << '\n' << "lgamma(+Inf) = " << std::lgamma(INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "lgamma(0) = " << std::lgamma(0) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_DIVBYZERO)) std::cout << " FE_DIVBYZERO raised\n"; }
Output:
lgamma(10) = 12.8018, log(9!) = 12.8018 lgamma(0.5) = 0.572365 , log(sqrt(pi)) = 0.572365 lgamma(1) = 0 lgamma(+Inf) = inf lgamma(0) = inf errno == ERANGE: Numerical result out of range FE_DIVBYZERO raised
See also
(C++11)(C++11)(C++11) |
gamma function (function) |
C documentation for lgamma
|
External links
Weisstein, Eric W. "Log Gamma Function." From MathWorld--A Wolfram Web Resource.