Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/algorithm/ranges/contains"

From cppreference.com
< cpp‎ | algorithm‎ | ranges
m (minor cleanups)
m (Notes: +link to Searchers, +FTM, reworded a bit.)
Line 71: Line 71:
 
The interfaces supports both iterator-sentinel pairs and range objects. Due to multi-pass iteration, these algorithms requires both ranges to be forward ranges, and the elements' projections need to be comparable when using the predicate.
 
The interfaces supports both iterator-sentinel pairs and range objects. Due to multi-pass iteration, these algorithms requires both ranges to be forward ranges, and the elements' projections need to be comparable when using the predicate.
  
{{tt|ranges::contains_subrange}} provides no access to searchers like Boyer-Moore, but that's no more true than for {{c|ranges::search}}.
+
{{tt|ranges::contains_subrange}}, same as {{lc|ranges::search}}, but as opposed to {{lc|std::search}}, provides no access to {{named req|Searcher}}s (such as [[cpp/utility/functional#Searchers|Boyer-Moore]]).
 +
 
 +
{{feature test macro|__cpp_lib_ranges_contains}}
  
 
=== Example ===
 
=== Example ===

Revision as of 11:47, 28 July 2022

 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::input_iterator I, std::sentinel_for<I> S,

          class T, class Proj = std::identity >
requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>,
                                        const T*>

constexpr bool contains( I first, S last, const T& value, Proj proj = {} );
(1) (since C++23)
template< ranges::input_range R, class T, class Proj = std::identity >

requires std::indirect_binary_predicate<ranges::equal_to,
                                        std::projected<ranges::iterator_t<R>, Proj>,
                                        const T*>

constexpr bool contains( R&& r, const T& value, Proj proj = {} );
(2) (since C++23)
template< std::forward_iterator I1, std::sentinel_for<I1> S1,

          std::forward_iterator I2, std::sentinel_for<I2> S2,
          class Pred = ranges::equal_to,
          class Proj1 = std::identity, class Proj2 = std::identity >
requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool contains_subrange( I1 first1, S1 last1,
                                  I2 first2, S2 last2,
                                  Pred pred = {},

                                  Proj1 proj1 = {}, Proj2 proj2 = {} );
(3) (since C++23)
template< ranges::forward_range R1, ranges::forward_range R2,

          class Pred = ranges::equal_to,
          class Proj1 = std::identity, class Proj2 = std::identity >
requires std::indirectly_comparable<ranges::iterator_t<R1>,
                                    ranges::iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool contains_subrange( R1&& r1, R2&& r2,
                                  Pred pred = {},

                                  Proj1 proj1 = {}, Proj2 proj2 = {} );
(4) (since C++23)
1) Search-based algorithm that checks whether or not a given range contains a value with iterator-sentinel pairs.
2) Same as (1) but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.
3) Search-based algorithm that checks whether or not a given range is a subrange of another range with iterator-sentinel pairs.
4) Same as (3) but uses r1 as the first source range and r2 as the second source range, as if using ranges::begin(r1) as first1, ranges::end(r1) as last1, ranges::begin(r2) as first2, and ranges::end(r2) as last2.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Up until C++20, we’ve had to write
std::ranges::find(r, value) != std::ranges::end(r)
to determine if a single value is inside a range, and to check if a range contains a subrange of interest, we use
not std::ranges::search(haystack, needle).empty()
While this is accurate, it isn’t necessarily convenient, and it hardly expresses intent (especially in the latter case). Being able to say std::ranges::contains(r, value) addresses both of these points. Further evidence for the existence of a contains algorithm is that the STL gave C++98 an obscurely-named contains algorithm called binary_search, and any_of is “contains with a predicate”, showing that there’s prior art for this contains to be an algorithm.

Contents

Parameters

first, last - the range of elements to examine
r - the range of the elements to examine
value - value to compare the elements to
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

(1) and (2):

(3) and (4):

  • first2 == last2 || !ranges::search(first1, last1, first2, last2, pred, proj1, proj2).empty()

Complexity

At most last - first applications of the predicate and projection.

Notes

The interfaces supports both iterator-sentinel pairs and range objects. Due to multi-pass iteration, these algorithms requires both ranges to be forward ranges, and the elements' projections need to be comparable when using the predicate.

ranges::contains_subrange, same as ranges::search, but as opposed to std::search, provides no access to Searchers (such as Boyer-Moore).

Feature-test macro Value Std Feature
__cpp_lib_ranges_contains  

Example

See also

finds the first element satisfying specific criteria
(niebloid)[edit]
searches for the first occurrence of a range of elements
(niebloid)[edit]