Difference between revisions of "cpp/utility/program/longjmp"
m (usage note) |
(Added LWG issues #619 and #894 DR.) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{cpp/title| longjmp}} | + | {{cpp/title|longjmp}} |
{{cpp/utility/program/navbar}} | {{cpp/utility/program/navbar}} | ||
− | {{ | + | {{dcl begin}} |
− | + | {{dcl header|csetjmp}} | |
+ | {{dcl rev begin}} | ||
+ | {{dcl|until=c++17| | ||
+ | void longjmp( std::jmp_buf env, int status ); | ||
}} | }} | ||
+ | {{dcl|since=c++17| | ||
+ | [[noreturn]] void longjmp( std::jmp_buf env, int status ); | ||
+ | }} | ||
+ | {{dcl rev end}} | ||
+ | {{dcl end}} | ||
− | Loads the execution context {{ | + | Loads the execution context {{c|env}} saved by a previous call to {{lc|setjmp}}. This function does not return. Control is transferred to the call site of the macro {{lc|setjmp}} that set up {{c|env}}. That {{lc|setjmp}} then returns the value, passed as the {{c|status}}. |
− | If the function that called {{lc|setjmp}} has exited, the behavior is undefined (in other words, only long jumps up the call stack are allowed) | + | If the function that called {{lc|setjmp}} has exited, the behavior is undefined (in other words, only long jumps up the call stack are allowed). |
− | + | ===Extra restrictions in C++=== | |
+ | On top of C {{ltt|c/program/longjmp}}, C++ {{tt|std::longjmp}} has more restricted behavior. | ||
+ | |||
+ | If replacing {{tt|std::longjmp}} with {{c/core|throw}} and {{lc|setjmp}} with {{c/core|catch}} would invoke a [[cpp/language/destructor#Trivial destructor|non-trivial destructor]] for any automatic object, the behavior of such {{tt|std::longjmp}} is undefined. | ||
+ | |||
+ | {{rev begin}} | ||
+ | {{rev|since=c++20| | ||
+ | The behavior is undefined if {{tt|std::longjmp}} is called in a [[cpp/language/coroutines|coroutine]] in a place where the {{c/core|co_await}} operator may be used. | ||
+ | }} | ||
+ | {{rev end}} | ||
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par | env | variable referring to the execution state of the program saved by {{ | + | {{par|env|variable referring to the execution state of the program saved by {{lc|setjmp}}}} |
− | {{par | status | the value to return from {{lc|setjmp}}. If it is equal to {{c|0}}, {{c|1}} is used instead}} | + | {{par|status|the value to return from {{lc|setjmp}}. If it is equal to {{c|0}}, {{c|1}} is used instead}} |
{{par end}} | {{par end}} | ||
Line 21: | Line 38: | ||
===Notes=== | ===Notes=== | ||
− | {{tt|longjmp}} is the mechanism used in C to handle unexpected error conditions where the function cannot return meaningfully. C++ generally uses [[cpp/language/exceptions|exception handling]] for this purpose. | + | {{tt|std::longjmp}} is the mechanism used in C to handle unexpected error conditions where the function cannot return meaningfully. C++ generally uses [[cpp/language/exceptions|exception handling]] for this purpose. |
===Example=== | ===Example=== | ||
− | {{example | + | {{cpp/utility/program/example setjmp}} |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ===Defect reports=== | |
− | + | {{dr list begin}} | |
− | + | {{dr list item|wg=lwg|dr=619|std=C++98|before=the wording of the extra restrictions in C++ was vague|after=improved the wording}} | |
− | { | + | {{dr list item|wg=lwg|dr=894|std=C++98|before=the behavior was undefined if replacing<br>{{tt|std::longjmp}} with {{c/core|throw}} and {{lc|setjmp}} with<br>{{c/core|catch}} would destroy any automatic object|after=the behavior is only undefined<br>if a non-trivial destructor for<br>any automatic object is invoked}} |
− | + | {{dr list end}} | |
− | + | ||
− | } | + | |
− | + | ||
− | + | ||
− | { | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | } | + | |
− | + | ||
− | a | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | }} | + | |
===See also=== | ===See also=== | ||
{{dsc begin}} | {{dsc begin}} | ||
− | {{dsc inc | cpp/utility/program/dsc setjmp}} | + | {{dsc inc|cpp/utility/program/dsc setjmp}} |
− | {{dsc see c | c/program/longjmp}} | + | {{dsc see c|c/program/longjmp}} |
{{dsc end}} | {{dsc end}} | ||
− | + | {{langlinks|de|es|fr|it|ja|pt|ru|zh}} | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Latest revision as of 19:25, 2 March 2023
Defined in header <csetjmp>
|
||
void longjmp( std::jmp_buf env, int status ); |
(until C++17) | |
[[noreturn]] void longjmp( std::jmp_buf env, int status ); |
(since C++17) | |
Loads the execution context env saved by a previous call to setjmp. This function does not return. Control is transferred to the call site of the macro setjmp that set up env. That setjmp then returns the value, passed as the status.
If the function that called setjmp has exited, the behavior is undefined (in other words, only long jumps up the call stack are allowed).
Contents |
[edit] Extra restrictions in C++
On top of C longjmp, C++ std::longjmp
has more restricted behavior.
If replacing std::longjmp
with throw and setjmp with catch would invoke a non-trivial destructor for any automatic object, the behavior of such std::longjmp
is undefined.
The behavior is undefined if |
(since C++20) |
[edit] Parameters
env | - | variable referring to the execution state of the program saved by setjmp |
status | - | the value to return from setjmp. If it is equal to 0, 1 is used instead |
[edit] Return value
(none)
[edit] Notes
std::longjmp
is the mechanism used in C to handle unexpected error conditions where the function cannot return meaningfully. C++ generally uses exception handling for this purpose.
[edit] Example
#include <array> #include <cmath> #include <csetjmp> #include <cstdlib> #include <format> #include <iostream> std::jmp_buf solver_error_handler; std::array<double, 2> solve_quadratic_equation(double a, double b, double c) { const double discriminant = b * b - 4.0 * a * c; if (discriminant < 0) std::longjmp(solver_error_handler, true); // Go to error handler const double delta = std::sqrt(discriminant) / (2.0 * a); const double argmin = -b / (2.0 * a); return {argmin - delta, argmin + delta}; } void show_quadratic_equation_solution(double a, double b, double c) { std::cout << std::format("Solving {}x² + {}x + {} = 0...\n", a, b, c); auto [x_0, x_1] = solve_quadratic_equation(a, b, c); std::cout << std::format("x₁ = {}, x₂ = {}\n\n", x_0, x_1); } int main() { if (setjmp(solver_error_handler)) { // Error handler for solver std::cout << "No real solution\n"; return EXIT_FAILURE; } for (auto [a, b, c] : {std::array{1, -3, 2}, {2, -3, -2}, {1, 2, 3}}) show_quadratic_equation_solution(a, b, c); return EXIT_SUCCESS; }
Output:
Solving 1x² + -3x + 2 = 0... x₁ = 1, x₂ = 2 Solving 2x² + -3x + -2 = 0... x₁ = -0.5, x₂ = 2 Solving 1x² + 2x + 3 = 0... No real solution
[edit] Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 619 | C++98 | the wording of the extra restrictions in C++ was vague | improved the wording |
LWG 894 | C++98 | the behavior was undefined if replacingstd::longjmp with throw and setjmp withcatch would destroy any automatic object |
the behavior is only undefined if a non-trivial destructor for any automatic object is invoked |
[edit] See also
saves the context (function macro) | |
C documentation for longjmp
|