Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/complex/conj"

From cppreference.com
< cpp‎ | numeric‎ | complex
m (langlinks)
(Applied P1467R9.)
Line 2: Line 2:
 
{{cpp/numeric/complex/navbar}}
 
{{cpp/numeric/complex/navbar}}
 
{{dcl begin}}
 
{{dcl begin}}
{{dcl header | complex}}
+
{{dcl header|complex}}
{{dcl rev multi | num=1 | until1=c++20 | dcl1=
+
{{dcl rev multi|num=1|dcl1=
 
template< class T >  
 
template< class T >  
 
std::complex<T> conj( const std::complex<T>& z );
 
std::complex<T> conj( const std::complex<T>& z );
Line 10: Line 10:
 
constexpr std::complex<T> conj( const std::complex<T>& z );
 
constexpr std::complex<T> conj( const std::complex<T>& z );
 
}}
 
}}
{{dcl rev multi | num=2 | since1=c++11 | dcl1=
+
{{dcl rev multi|num=2|since1=c++11|dcl1=
std::complex<float> conj( float z );
+
std::complex<float>       conj( float f );
template< class DoubleOrInteger >
+
std::complex<double>     conj( double f );
std::complex<double> conj( DoubleOrInteger z );
+
std::complex<long double> conj( long double f );
std::complex<long double> conj( long double z );
+
 
|since2=c++20|dcl2=
 
|since2=c++20|dcl2=
constexpr std::complex<float> conj( float z );
+
constexpr std::complex<float>       conj( float f );
template< class DoubleOrInteger >
+
constexpr std::complex<double>      conj( double f );
constexpr std::complex<double> conj( DoubleOrInteger z );
+
constexpr std::complex<long double> conj( long double f );
constexpr std::complex<long double> conj( long double z );
+
|since3=c++23|dcl3=
 +
template< class FloatingPoint >
 +
constexpr std::complex<FloatingPoint> conj( FloatingPoint f );
 +
}}
 +
{{dcl rev multi|num=3|since1=c++11|dcl1=
 +
template< class Integer>
 +
constexpr std::complex<double> conj( Integer f );
 +
|since2=c++20|dcl2=
 +
template< class Integer>
 +
constexpr std::complex<double> conj( Integer f );
 
}}
 
}}
 
{{dcl end}}
 
{{dcl end}}
  
@1@ Computes the [[enwiki:Complex_conjugate|complex conjugate]] of {{tt|z}} by reversing the sign of the imaginary part.
+
@1@ Computes the {{enwiki|Complex conjugate|complex conjugate}} of {{c|z}} by reversing the sign of the imaginary part.
  
 
{{rrev|since=c++11|
 
{{rrev|since=c++11|
@2@ Additional overloads are provided for {{c|float}}, {{c|double}}, {{c|long double}}, and all integer types, which are treated as complex numbers with zero imaginary component.
+
@2,3@ Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
 
}}
 
}}
  
 
===Parameters===
 
===Parameters===
 
{{par begin}}
 
{{par begin}}
{{par | z | complex value}}
+
{{par|z|complex value}}
 +
{{par|f|floating-point value}}
 +
{{par|i|integer value}}
 
{{par end}}
 
{{par end}}
  
 
===Return value===
 
===Return value===
 +
@1@ The complex conjugate of {{c|z}}.
 +
@2@ {{c|std::complex(f)}}.
 +
@3@ {{c|std::complex<double>(f)}}.
  
The complex conjugate of {{tt|z}}
+
===Notes===
 +
{{cpp/numeric/complex/additional overload note|conj}}
  
 
===Example===
 
===Example===
 
{{example|
 
{{example|
 
|code=
 
|code=
#include <iostream>
 
 
#include <complex>
 
#include <complex>
 +
#include <iostream>
  
 
int main()
 
int main()
 
{
 
{
     std::complex<double> z(1,2);
+
     std::complex<double> z(1, 2);
 
     std::cout << "The conjugate of " << z << " is " << std::conj(z) << '\n'
 
     std::cout << "The conjugate of " << z << " is " << std::conj(z) << '\n'
 
               << "Their product is " << z*std::conj(z) << '\n';
 
               << "Their product is " << z*std::conj(z) << '\n';
Line 57: Line 71:
 
===See also===
 
===See also===
 
{{dsc begin}}
 
{{dsc begin}}
{{dsc inc | cpp/numeric/complex/dsc abs}}
+
{{dsc inc|cpp/numeric/complex/dsc abs}}
{{dsc inc | cpp/numeric/complex/dsc norm}}
+
{{dsc inc|cpp/numeric/complex/dsc norm}}
{{dsc inc | cpp/numeric/complex/dsc polar}}
+
{{dsc inc|cpp/numeric/complex/dsc polar}}
{{dsc see c | c/numeric/complex/conj}}
+
{{dsc see c|c/numeric/complex/conj}}
 
{{dsc end}}
 
{{dsc end}}
  
 
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}
 
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}

Revision as of 00:36, 8 March 2023

 
 
 
 
Defined in header <complex>
(1)
template< class T >
std::complex<T> conj( const std::complex<T>& z );
(until C++20)
template< class T >
constexpr std::complex<T> conj( const std::complex<T>& z );
(since C++20)
(2)
std::complex<float>       conj( float f );

std::complex<double>      conj( double f );

std::complex<long double> conj( long double f );
(since C++11)
(until C++20)
constexpr std::complex<float>       conj( float f );

constexpr std::complex<double>      conj( double f );

constexpr std::complex<long double> conj( long double f );
(since C++20)
(until C++23)
template< class FloatingPoint >
constexpr std::complex<FloatingPoint> conj( FloatingPoint f );
(since C++23)
(3)
template< class Integer>
constexpr std::complex<double> conj( Integer f );
(since C++11)
(until C++20)
template< class Integer>
constexpr std::complex<double> conj( Integer f );
(since C++20)
1) Computes the complex conjugate of z by reversing the sign of the imaginary part.
2,3) Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
(since C++11)

Contents

Parameters

z - complex value
f - floating-point value
i - integer value

Return value

1) The complex conjugate of z.
3) std::complex<double>(f).

Notes

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num:

  • If num has a standard(until C++23) floating-point type T, then std::conj(num) has the same effect as std::conj(std::complex<T>(num)).
  • Otherwise, if num has an integer type, then std::conj(num) has the same effect as std::conj(std::complex<double>(num)).

Example

#include <complex>
#include <iostream>
 
int main()
{
    std::complex<double> z(1, 2);
    std::cout << "The conjugate of " << z << " is " << std::conj(z) << '\n'
              << "Their product is " << z*std::conj(z) << '\n';
}

Output:

The conjugate of (1,2) is (1,-2)
Their product is (5,0)

See also

returns the magnitude of a complex number
(function template) [edit]
returns the squared magnitude
(function template) [edit]
constructs a complex number from magnitude and phase angle
(function template) [edit]