Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/complex/conj"

From cppreference.com
< cpp‎ | numeric‎ | complex
m (More fixes.)
(Use letters to mark the additional overloads in order to differentiate them from the real overloads.)
Line 10: Line 10:
 
constexpr std::complex<T> conj( const std::complex<T>& z );
 
constexpr std::complex<T> conj( const std::complex<T>& z );
 
}}
 
}}
{{dcl rev multi|num=2|since1=c++11|dcl1=
+
{{dcl h|[[#Notes|Additional overloads]] {{mark since c++11}}}}
 +
{{dcl header|complex}}
 +
{{dcl rev multi|num=A|dcl1=
 
std::complex<float>      conj( float f );
 
std::complex<float>      conj( float f );
 
std::complex<double>      conj( double f );
 
std::complex<double>      conj( double f );
Line 22: Line 24:
 
constexpr std::complex<FloatingPoint> conj( FloatingPoint f );
 
constexpr std::complex<FloatingPoint> conj( FloatingPoint f );
 
}}
 
}}
{{dcl rev multi|num=3|since1=c++11|dcl1=
+
{{dcl rev multi|num=B|dcl1=
template< class Integer>
+
template< class Integer >
 
constexpr std::complex<double> conj( Integer i );
 
constexpr std::complex<double> conj( Integer i );
 
|since2=c++20|dcl2=
 
|since2=c++20|dcl2=
template< class Integer>
+
template< class Integer >
 
constexpr std::complex<double> conj( Integer i );
 
constexpr std::complex<double> conj( Integer i );
 
}}
 
}}
Line 34: Line 36:
  
 
{{rrev|since=c++11|
 
{{rrev|since=c++11|
@2,3@ Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
+
@A,B@ Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
 
}}
 
}}
  
Line 46: Line 48:
 
===Return value===
 
===Return value===
 
@1@ The complex conjugate of {{c|z}}.
 
@1@ The complex conjugate of {{c|z}}.
@2@ {{c|std::complex(f)}}.
+
@A@ {{c|std::complex(f)}}.
@3@ {{c|std::complex<double>(i)}}.
+
@B@ {{c|std::complex<double>(i)}}.
  
 
===Notes===
 
===Notes===

Revision as of 18:09, 12 March 2023

 
 
 
 
Defined in header <complex>
(1)
template< class T >
std::complex<T> conj( const std::complex<T>& z );
(until C++20)
template< class T >
constexpr std::complex<T> conj( const std::complex<T>& z );
(since C++20)
Additional overloads (since C++11)
Defined in header <complex>
(A)
std::complex<float>       conj( float f );

std::complex<double>      conj( double f );

std::complex<long double> conj( long double f );
(until C++20)
constexpr std::complex<float>       conj( float f );

constexpr std::complex<double>      conj( double f );

constexpr std::complex<long double> conj( long double f );
(since C++20)
(until C++23)
template< class FloatingPoint >
constexpr std::complex<FloatingPoint> conj( FloatingPoint f );
(since C++23)
(B)
template< class Integer >
constexpr std::complex<double> conj( Integer i );
(until C++20)
template< class Integer >
constexpr std::complex<double> conj( Integer i );
(since C++20)
1) Computes the complex conjugate of z by reversing the sign of the imaginary part.
A,B) Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
(since C++11)

Contents

Parameters

z - complex value
f - floating-point value
i - integer value

Return value

1) The complex conjugate of z.
B) std::complex<double>(i).

Notes

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num:

  • If num has a standard(until C++23) floating-point type T, then std::conj(num) has the same effect as std::conj(std::complex<T>(num)).
  • Otherwise, if num has an integer type, then std::conj(num) has the same effect as std::conj(std::complex<double>(num)).

Example

#include <complex>
#include <iostream>
 
int main()
{
    std::complex<double> z(1, 2);
    std::cout << "The conjugate of " << z << " is " << std::conj(z) << '\n'
              << "Their product is " << z * std::conj(z) << '\n';
}

Output:

The conjugate of (1,2) is (1,-2)
Their product is (5,0)

See also

returns the magnitude of a complex number
(function template) [edit]
returns the squared magnitude
(function template) [edit]
constructs a complex number from magnitude and phase angle
(function template) [edit]