Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/math/hypot"

From cppreference.com
< cpp‎ | numeric‎ | math
m (Notes: ~FTM, fmt)
(Applied P1467R9.)
Line 3: Line 3:
 
{{dcl begin}}
 
{{dcl begin}}
 
{{dcl header|cmath}}
 
{{dcl header|cmath}}
{{dcl|since=c++11|num=1|
+
{{dcl rev multi|num=1|since1=c++11|dcl1=
 
float      hypot ( float x, float y );
 
float      hypot ( float x, float y );
float      hypotf( float x, float y );
 
}}
 
{{dcl|since=c++11|num=2|
 
 
double      hypot ( double x, double y );
 
double      hypot ( double x, double y );
}}
 
{{dcl|since=c++11|num=3|
 
 
long double hypot ( long double x, long double y );
 
long double hypot ( long double x, long double y );
long double hypotl( long double x, long double y );
+
|since2=c++23|dcl2=
 +
/* floating-point-type */ hypot( /* floating-point-type */ x,
 +
                                /* floating-point-type */ y );
 
}}
 
}}
{{dcl|since=c++11|num=4|
+
{{dcl|num=2|since=c++11|
Promoted    hypot ( Arithmetic1 x, Arithmetic2 y );
+
float      hypotf( float x, float y );
 
}}
 
}}
{{dcl|since=c++17|num=5|
+
{{dcl|num=3|since=c++11|
float      hypot ( float x, float y, float z );
+
long double hypotl( long double x, long double y );
 
}}
 
}}
{{dcl|since=c++17|num=6|
+
{{dcl rev multi|num=4|since1=c++17|dcl1=
 +
float      hypot ( float x, float y, float z );
 
double      hypot ( double x, double y, double z );
 
double      hypot ( double x, double y, double z );
}}
 
{{dcl|since=c++17|num=7|
 
 
long double hypot ( long double x, long double y, long double z );
 
long double hypot ( long double x, long double y, long double z );
 +
|since2=c++23|dcl2=
 +
/* floating-point-type */ hypot( /* floating-point-type */ x,
 +
                                /* floating-point-type */ y
 +
                                /* floating-point-type */ z );
 +
}}
 +
{{dcl h|[[#Notes|Additional overloads]] {{mark since c++11}}}}
 +
{{dcl header|cmath}}
 +
{{dcl|num=A|
 +
template< class Arithmetic1, Arithmetic2 >
 +
/* common-floating-point-type */ hypot( Arithmetic1 x, Arithmetic2 y );
 
}}
 
}}
{{dcl|since=c++17|num=8|
+
{{dcl|num=B|since=c++17|
Promoted    hypot ( Arithmetic1 x, Arithmetic2 y, Arithmetic3 z );
+
template< class Arithmetic1, Arithmetic2, Arithmetic3 >
 +
/* common-floating-point-type */
 +
    hypot( Arithmetic1 x, Arithmetic2 y, Arithmetic3 z );
 
}}
 
}}
 
{{dcl end}}
 
{{dcl end}}
  
@1-3@ Computes the square root of the sum of the squares of {{tt|x}} and {{tt|y}}, without undue overflow or underflow at intermediate stages of the computation.
+
@1-3@ Computes the square root of the sum of the squares of {{c|x}} and {{c|y}}, without undue overflow or underflow at intermediate stages of the computation.{{rev inl|since=c++23| The library provides overloads of {{tt|std::hypot}} for all cv-unqualified floating-point types as the type of the parameters {{c|x}} and {{c|y}}.}}
@4@ A set of overloads or a function template for all combinations of arguments of arithmetic type not covered by {{v|1-3}}. If any argument has [[cpp/types/is_integral|integral type]], it is cast to {{c|double}}. If any other argument is {{c|long double}}, then the return type is {{c|long double}}, otherwise it is {{c|double}}.
+
@4@ Computes the square root of the sum of the squares of {{c|x}}, {{c|y}}, and {{c|z}}, without undue overflow or underflow at intermediate stages of the computation.{{rev inl|since=c++23| The library provides overloads of {{tt|std::hypot}} for all cv-unqualified floating-point types as the type of the parameters {{c|x}}, {{c|y}} and {{c|z}}.}}
@5-7@ Computes the square root of the sum of the squares of {{tt|x}}, {{tt|y}}, and {{tt|z}}, without undue overflow or underflow at intermediate stages of the computation.
+
@8@ A set of overloads or a function template for all combinations of arguments of arithmetic type not covered by {{v|5-7}}. If any argument has [[cpp/types/is_integral|integral type]], it is cast to {{c|double}}. If any other argument is {{c|long double}}, then the return type is {{c|long double}}, otherwise it is {{c|double}}.
+
  
The value computed by the two-argument version of this function is the length of the hypotenuse of a right-angled triangle with sides of length {{tt|x}} and {{tt|y}}, or the distance of the point {{tt|(x,y)}} from the origin {{tt|(0,0)}}, or the magnitude of a complex number {{tt|x+''i''y}}
+
{{rrev|since=c++11|
 +
@A,B@ Additional overloads are provided for all other combinations of arithmetic types.
 +
}}
 +
 
 +
The value computed by the two-argument version of this function is the length of the hypotenuse of a right-angled triangle with sides of length {{c|x}} and {{c|y}}, or the distance of the point {{tt|(x,y)}} from the origin {{tt|(0,0)}}, or the magnitude of a complex number {{tt|x+''i''y}}
  
 
The value computed by the three-argument version of this function is the distance of the point {{tt|(x,y,z)}} from the origin {{tt|(0,0,0)}}.
 
The value computed by the three-argument version of this function is the distance of the point {{tt|(x,y,z)}} from the origin {{tt|(0,0,0)}}.
Line 42: Line 52:
 
===Parameters===
 
===Parameters===
 
{{par begin}}
 
{{par begin}}
{{par|x, y, z|values of floating-point or [[cpp/types/is_integral|integral types]]}}
+
{{par|x, y, z|floating-point or integer values}}
 
{{par end}}
 
{{par end}}
  
 
===Return value===
 
===Return value===
@1-4@ If no errors occur, the hypotenuse of a right-angled triangle, {{mathjax-or|1=\(\scriptsize{\sqrt{x^2+y^2} }\)|2={{mrad|x{{su|p=2}}+y{{su|p=2}}}}}}, is returned.
+
@1-3,A@ If no errors occur, the hypotenuse of a right-angled triangle, {{mathjax-or|1=\(\scriptsize{\sqrt{x^2+y^2} }\)|2={{mrad|x{{su|p=2}}+y{{su|p=2}}}}}}, is returned.
@5-8@ If no errors occur, the distance from origin in 3D space, {{mathjax-or|1=\(\scriptsize{\sqrt{x^2+y^2+z^2} }\)|2={{mrad|x{{su|p=2}}+y{{su|p=2}}+z{{su|p=2}}}}}}, is returned.
+
@4,B@ If no errors occur, the distance from origin in 3D space, {{mathjax-or|1=\(\scriptsize{\sqrt{x^2+y^2+z^2} }\)|2={{mrad|x{{su|p=2}}+y{{su|p=2}}+z{{su|p=2}}}}}}, is returned.
  
 
If a range error due to overflow occurs, {{lc|HUGE_VAL|+HUGE_VAL}}, {{tt|+HUGE_VALF}}, or {{tt|+HUGE_VALL}} is returned.
 
If a range error due to overflow occurs, {{lc|HUGE_VAL|+HUGE_VAL}}, {{tt|+HUGE_VALF}}, or {{tt|+HUGE_VALL}} is returned.
Line 57: Line 67:
  
 
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
 
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
* {{c|hypot(x, y)}}, {{c|hypot(y, x)}}, and {{c|hypot(x, -y)}} are equivalent
+
* {{c|std::hypot(x, y)}}, {{c|std::hypot(y, x)}}, and {{c|std::hypot(x, -y)}} are equivalent
* if one of the arguments is ±0, {{tt|hypot(x,y)}} is equivalent to {{c|fabs}} called with the non-zero argument
+
* if one of the arguments is ±0, {{c|std::hypot(x, y)}} is equivalent to {{lc|std::fabs}} called with the non-zero argument
* if one of the arguments is ±∞, {{tt|hypot(x,y)}} returns +∞ even if the other argument is NaN
+
* if one of the arguments is ±∞, {{c|std::hypot(x, y)}} returns +∞ even if the other argument is NaN
 
* otherwise, if any of the arguments is NaN, NaN is returned
 
* otherwise, if any of the arguments is NaN, NaN is returned
  
Line 65: Line 75:
 
Implementations usually guarantee precision of less than 1 ulp ([[enwiki:Unit_in_the_last_place|units in the last place]]): [http://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/ieee754/dbl-64/e_hypot.c GNU], [http://www.freebsd.org/cgi/cvsweb.cgi/src/lib/msun/src/e_hypot.c BSD].
 
Implementations usually guarantee precision of less than 1 ulp ([[enwiki:Unit_in_the_last_place|units in the last place]]): [http://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/ieee754/dbl-64/e_hypot.c GNU], [http://www.freebsd.org/cgi/cvsweb.cgi/src/lib/msun/src/e_hypot.c BSD].
  
{{c|std::hypot(x, y)}} is equivalent to {{c|std::abs(std::complex<double>(x,y))}}.
+
{{c|std::hypot(x, y)}} is equivalent to {{c|std::abs(std::complex<double>(x, y))}}.
  
 
[http://pubs.opengroup.org/onlinepubs/9699919799/functions/hypot.html POSIX specifies] that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).
 
[http://pubs.opengroup.org/onlinepubs/9699919799/functions/hypot.html POSIX specifies] that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).
  
 
{{rrev|since=c++17|
 
{{rrev|since=c++17|
Distance between two points {{tt|(x1,y1,z1)}} and {{tt|(x2,y2,z2)}} on 3D space can be calculated using 3-argument overload of {{tt|std::hypot}} as {{c|std::hypot(x2-x1, y2-y1, z2-z1)}}.
+
Distance between two points {{tt|(x1,y1,z1)}} and {{tt|(x2,y2,z2)}} on 3D space can be calculated using 3-argument overload of {{tt|std::hypot}} as {{c|std::hypot(x2 - x1, y2 - y1, z2 - z1)}}.
 
}}
 
}}
 +
 +
{{cpp/numeric/math/additional overload note|hypot}}
  
 
{{feature test macro|__cpp_lib_hypot|std=C++17|value=201603L|3-argument overload of {{tt|std::hypot}}}}
 
{{feature test macro|__cpp_lib_hypot|std=C++17|value=201603L|3-argument overload of {{tt|std::hypot}}}}
Line 79: Line 91:
 
|
 
|
 
|code=
 
|code=
#include <iostream>
 
#include <cmath>
 
 
#include <cerrno>
 
#include <cerrno>
 
#include <cfenv>
 
#include <cfenv>
 
#include <cfloat>
 
#include <cfloat>
 +
#include <cmath>
 
#include <cstring>
 
#include <cstring>
 +
#include <iostream>
  
 
// #pragma STDC FENV_ACCESS ON
 
// #pragma STDC FENV_ACCESS ON
 +
 +
struct Point3D { float x, y, z; };
 +
 
int main()
 
int main()
 
{
 
{
Line 92: Line 107:
 
     std::cout << "(1,1) cartesian is (" << std::hypot(1,1)
 
     std::cout << "(1,1) cartesian is (" << std::hypot(1,1)
 
               << ',' << std::atan2(1,1) << ") polar\n";
 
               << ',' << std::atan2(1,1) << ") polar\n";
 
+
   
     struct Point3D { float x, y, z; } a{3.14, 2.71, 9.87}, b{1.14, 5.71, 3.87};
+
     Point3D a{3.14, 2.71, 9.87}, b{1.14, 5.71, 3.87};
 
     // C++17 has 3-argument hypot overload:
 
     // C++17 has 3-argument hypot overload:
     std::cout << "distance(a,b) = " << std::hypot(a.x-b.x, a.y-b.y, a.z-b.z) << '\n';
+
     std::cout << "distance(a,b) = "
 
+
              << std::hypot(a.x - b.x, a.y - b.y, a.z - b.z) << '\n';
 +
   
 
     // special values
 
     // special values
 
     std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n';
 
     std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n';
 
+
   
 
     // error handling
 
     // error handling
 
     errno = 0;
 
     errno = 0;
 
     std::feclearexcept(FE_ALL_EXCEPT);
 
     std::feclearexcept(FE_ALL_EXCEPT);
 
     std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n';
 
     std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n';
 +
   
 
     if (errno == ERANGE)
 
     if (errno == ERANGE)
 
         std::cout << "    errno = ERANGE " << std::strerror(errno) << '\n';
 
         std::cout << "    errno = ERANGE " << std::strerror(errno) << '\n';

Revision as of 01:39, 13 March 2023

 
 
 
 
Defined in header <cmath>
(1)
float       hypot ( float x, float y );

double      hypot ( double x, double y );

long double hypot ( long double x, long double y );
(since C++11)
(until C++23)
/* floating-point-type */ hypot( /* floating-point-type */ x,
                                 /* floating-point-type */ y );
(since C++23)
float       hypotf( float x, float y );
(2) (since C++11)
long double hypotl( long double x, long double y );
(3) (since C++11)
(4)
float       hypot ( float x, float y, float z );

double      hypot ( double x, double y, double z );

long double hypot ( long double x, long double y, long double z );
(since C++17)
(until C++23)
/* floating-point-type */ hypot( /* floating-point-type */ x,

                                 /* floating-point-type */ y

                                 /* floating-point-type */ z );
(since C++23)
Additional overloads (since C++11)
Defined in header <cmath>
template< class Arithmetic1, Arithmetic2 >
/* common-floating-point-type */ hypot( Arithmetic1 x, Arithmetic2 y );
(A)
template< class Arithmetic1, Arithmetic2, Arithmetic3 >

/* common-floating-point-type */

    hypot( Arithmetic1 x, Arithmetic2 y, Arithmetic3 z );
(B) (since C++17)
1-3) Computes the square root of the sum of the squares of x and y, without undue overflow or underflow at intermediate stages of the computation. The library provides overloads of std::hypot for all cv-unqualified floating-point types as the type of the parameters x and y.(since C++23)
4) Computes the square root of the sum of the squares of x, y, and z, without undue overflow or underflow at intermediate stages of the computation. The library provides overloads of std::hypot for all cv-unqualified floating-point types as the type of the parameters x, y and z.(since C++23)
A,B) Additional overloads are provided for all other combinations of arithmetic types.
(since C++11)

The value computed by the two-argument version of this function is the length of the hypotenuse of a right-angled triangle with sides of length x and y, or the distance of the point (x,y) from the origin (0,0), or the magnitude of a complex number x+iy

The value computed by the three-argument version of this function is the distance of the point (x,y,z) from the origin (0,0,0).

Contents

Parameters

x, y, z - floating-point or integer values

Return value

1-3,A) If no errors occur, the hypotenuse of a right-angled triangle, x2+y2, is returned.
4,B) If no errors occur, the distance from origin in 3D space, x2+y2+z2, is returned.

If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.

If a range error due to underflow occurs, the correct result (after rounding) is returned.

Error handling

Errors are reported as specified in math_errhandling

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • std::hypot(x, y), std::hypot(y, x), and std::hypot(x, -y) are equivalent
  • if one of the arguments is ±0, std::hypot(x, y) is equivalent to std::fabs called with the non-zero argument
  • if one of the arguments is ±∞, std::hypot(x, y) returns +∞ even if the other argument is NaN
  • otherwise, if any of the arguments is NaN, NaN is returned

Notes

Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD.

std::hypot(x, y) is equivalent to std::abs(std::complex<double>(x, y)).

POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).

Distance between two points (x1,y1,z1) and (x2,y2,z2) on 3D space can be calculated using 3-argument overload of std::hypot as std::hypot(x2 - x1, y2 - y1, z2 - z1).

(since C++17)

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their first argument num1, second argument num2 and the optional third argument num3:

  • If num1, num2 or num3 has type long double, then
  • std::hypot(num1, num2) has the same effect as std::hypot(static_cast<long double>(num1),
               static_cast<long double>(num2))
    , and
  • std::hypot(num1, num2, num3) has the same effect as std::hypot(static_cast<long double>(num1),
               static_cast<long double>(num2),
               static_cast<long double>(num3))
    .
  • Otherwise, if num1, num2 and/or num3 has type double or an integer type, then
  • std::hypot(num1, num2) has the same effect as std::hypot(static_cast<double>(num1),
               static_cast<double>(num2))
    , and
  • std::hypot(num1, num2, num3) has the same effect as std::hypot(static_cast<double>(num1),
               static_cast<double>(num2),
               static_cast<double>(num3))
    .
  • Otherwise, if num1, num2 or num3 has type float, then
  • std::hypot(num1, num2) has the same effect as std::hypot(static_cast<float>(num1),
               static_cast<float>(num2))
    , and
  • std::hypot(num1, num2, num3) has the same effect as std::hypot(static_cast<float>(num1),
               static_cast<float>(num2),
               static_cast<float>(num3))
    .
(until C++23)

If num1, num2 and num3 have arithmetic types, then

  • std::hypot(num1, num2) has the same effect as std::hypot(static_cast</* common-floating-point-type */>(num1),
               static_cast</* common-floating-point-type */>(num2))
    , and
  • std::hypot(num1, num2, num3) has the same effect as std::hypot(static_cast</* common-floating-point-type */>(num1),
               static_cast</* common-floating-point-type */>(num2),
               static_cast</* common-floating-point-type */>(num3))
    ,

where /* common-floating-point-type */ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank among the types of num1, num2 and num3, arguments of integer type are considered to have the same floating-point conversion rank as double.

If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.

(since C++23)
Feature-test macro Value Std Feature
__cpp_lib_hypot 201603L (C++17) 3-argument overload of std::hypot

Example

#include <cerrno>
#include <cfenv>
#include <cfloat>
#include <cmath>
#include <cstring>
#include <iostream>
 
// #pragma STDC FENV_ACCESS ON
 
struct Point3D { float x, y, z; };
 
int main()
{
    // typical usage
    std::cout << "(1,1) cartesian is (" << std::hypot(1,1)
              << ',' << std::atan2(1,1) << ") polar\n";
 
    Point3D a{3.14, 2.71, 9.87}, b{1.14, 5.71, 3.87};
    // C++17 has 3-argument hypot overload:
    std::cout << "distance(a,b) = "
              << std::hypot(a.x - b.x, a.y - b.y, a.z - b.z) << '\n';
 
    // special values
    std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n';
 
    // error handling
    errno = 0;
    std::feclearexcept(FE_ALL_EXCEPT);
    std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n';
 
    if (errno == ERANGE)
        std::cout << "    errno = ERANGE " << std::strerror(errno) << '\n';
    if (std::fetestexcept(FE_OVERFLOW))
        std::cout << "    FE_OVERFLOW raised\n";
}

Output:

(1,1) cartesian is (1.41421,0.785398) polar
distance(a,b) = 7
hypot(NAN,INFINITY) = inf
hypot(DBL_MAX,DBL_MAX) = inf
    errno = ERANGE Numerical result out of range
    FE_OVERFLOW raised

See also

(C++11)(C++11)
raises a number to the given power (xy)
(function) [edit]
(C++11)(C++11)
computes square root (x)
(function) [edit]
(C++11)(C++11)(C++11)
computes cube root (3x)
(function) [edit]
returns the magnitude of a complex number
(function template) [edit]
C documentation for hypot