Difference between revisions of "cpp/numeric/math/hypot"
m (→Notes: ~FTM, fmt) |
(Applied P1467R9.) |
||
Line 3: | Line 3: | ||
{{dcl begin}} | {{dcl begin}} | ||
{{dcl header|cmath}} | {{dcl header|cmath}} | ||
− | {{dcl| | + | {{dcl rev multi|num=1|since1=c++11|dcl1= |
float hypot ( float x, float y ); | float hypot ( float x, float y ); | ||
− | |||
− | |||
− | |||
double hypot ( double x, double y ); | double hypot ( double x, double y ); | ||
− | |||
− | |||
long double hypot ( long double x, long double y ); | long double hypot ( long double x, long double y ); | ||
− | + | |since2=c++23|dcl2= | |
+ | /* floating-point-type */ hypot( /* floating-point-type */ x, | ||
+ | /* floating-point-type */ y ); | ||
}} | }} | ||
− | {{dcl|since=c++11 | + | {{dcl|num=2|since=c++11| |
− | + | float hypotf( float x, float y ); | |
}} | }} | ||
− | {{dcl|since=c++ | + | {{dcl|num=3|since=c++11| |
− | + | long double hypotl( long double x, long double y ); | |
}} | }} | ||
− | {{dcl| | + | {{dcl rev multi|num=4|since1=c++17|dcl1= |
+ | float hypot ( float x, float y, float z ); | ||
double hypot ( double x, double y, double z ); | double hypot ( double x, double y, double z ); | ||
− | |||
− | |||
long double hypot ( long double x, long double y, long double z ); | long double hypot ( long double x, long double y, long double z ); | ||
+ | |since2=c++23|dcl2= | ||
+ | /* floating-point-type */ hypot( /* floating-point-type */ x, | ||
+ | /* floating-point-type */ y | ||
+ | /* floating-point-type */ z ); | ||
+ | }} | ||
+ | {{dcl h|[[#Notes|Additional overloads]] {{mark since c++11}}}} | ||
+ | {{dcl header|cmath}} | ||
+ | {{dcl|num=A| | ||
+ | template< class Arithmetic1, Arithmetic2 > | ||
+ | /* common-floating-point-type */ hypot( Arithmetic1 x, Arithmetic2 y ); | ||
}} | }} | ||
− | {{dcl|since=c++17| | + | {{dcl|num=B|since=c++17| |
− | + | template< class Arithmetic1, Arithmetic2, Arithmetic3 > | |
+ | /* common-floating-point-type */ | ||
+ | hypot( Arithmetic1 x, Arithmetic2 y, Arithmetic3 z ); | ||
}} | }} | ||
{{dcl end}} | {{dcl end}} | ||
− | @1-3@ Computes the square root of the sum of the squares of {{ | + | @1-3@ Computes the square root of the sum of the squares of {{c|x}} and {{c|y}}, without undue overflow or underflow at intermediate stages of the computation.{{rev inl|since=c++23| The library provides overloads of {{tt|std::hypot}} for all cv-unqualified floating-point types as the type of the parameters {{c|x}} and {{c|y}}.}} |
− | + | @4@ Computes the square root of the sum of the squares of {{c|x}}, {{c|y}}, and {{c|z}}, without undue overflow or underflow at intermediate stages of the computation.{{rev inl|since=c++23| The library provides overloads of {{tt|std::hypot}} for all cv-unqualified floating-point types as the type of the parameters {{c|x}}, {{c|y}} and {{c|z}}.}} | |
− | @ | + | |
− | + | ||
− | The value computed by the two-argument version of this function is the length of the hypotenuse of a right-angled triangle with sides of length {{ | + | {{rrev|since=c++11| |
+ | @A,B@ Additional overloads are provided for all other combinations of arithmetic types. | ||
+ | }} | ||
+ | |||
+ | The value computed by the two-argument version of this function is the length of the hypotenuse of a right-angled triangle with sides of length {{c|x}} and {{c|y}}, or the distance of the point {{tt|(x,y)}} from the origin {{tt|(0,0)}}, or the magnitude of a complex number {{tt|x+''i''y}} | ||
The value computed by the three-argument version of this function is the distance of the point {{tt|(x,y,z)}} from the origin {{tt|(0,0,0)}}. | The value computed by the three-argument version of this function is the distance of the point {{tt|(x,y,z)}} from the origin {{tt|(0,0,0)}}. | ||
Line 42: | Line 52: | ||
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par|x, y, z| | + | {{par|x, y, z|floating-point or integer values}} |
{{par end}} | {{par end}} | ||
===Return value=== | ===Return value=== | ||
− | @1- | + | @1-3,A@ If no errors occur, the hypotenuse of a right-angled triangle, {{mathjax-or|1=\(\scriptsize{\sqrt{x^2+y^2} }\)|2={{mrad|x{{su|p=2}}+y{{su|p=2}}}}}}, is returned. |
− | @ | + | @4,B@ If no errors occur, the distance from origin in 3D space, {{mathjax-or|1=\(\scriptsize{\sqrt{x^2+y^2+z^2} }\)|2={{mrad|x{{su|p=2}}+y{{su|p=2}}+z{{su|p=2}}}}}}, is returned. |
If a range error due to overflow occurs, {{lc|HUGE_VAL|+HUGE_VAL}}, {{tt|+HUGE_VALF}}, or {{tt|+HUGE_VALL}} is returned. | If a range error due to overflow occurs, {{lc|HUGE_VAL|+HUGE_VAL}}, {{tt|+HUGE_VALF}}, or {{tt|+HUGE_VALL}} is returned. | ||
Line 57: | Line 67: | ||
If the implementation supports IEEE floating-point arithmetic (IEC 60559), | If the implementation supports IEEE floating-point arithmetic (IEC 60559), | ||
− | * {{c|hypot(x, y)}}, {{c|hypot(y, x)}}, and {{c|hypot(x, -y)}} are equivalent | + | * {{c|std::hypot(x, y)}}, {{c|std::hypot(y, x)}}, and {{c|std::hypot(x, -y)}} are equivalent |
− | * if one of the arguments is ±0, {{ | + | * if one of the arguments is ±0, {{c|std::hypot(x, y)}} is equivalent to {{lc|std::fabs}} called with the non-zero argument |
− | * if one of the arguments is ±∞, {{ | + | * if one of the arguments is ±∞, {{c|std::hypot(x, y)}} returns +∞ even if the other argument is NaN |
* otherwise, if any of the arguments is NaN, NaN is returned | * otherwise, if any of the arguments is NaN, NaN is returned | ||
Line 65: | Line 75: | ||
Implementations usually guarantee precision of less than 1 ulp ([[enwiki:Unit_in_the_last_place|units in the last place]]): [http://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/ieee754/dbl-64/e_hypot.c GNU], [http://www.freebsd.org/cgi/cvsweb.cgi/src/lib/msun/src/e_hypot.c BSD]. | Implementations usually guarantee precision of less than 1 ulp ([[enwiki:Unit_in_the_last_place|units in the last place]]): [http://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/ieee754/dbl-64/e_hypot.c GNU], [http://www.freebsd.org/cgi/cvsweb.cgi/src/lib/msun/src/e_hypot.c BSD]. | ||
− | {{c|std::hypot(x, y)}} is equivalent to {{c|std::abs(std::complex<double>(x,y))}}. | + | {{c|std::hypot(x, y)}} is equivalent to {{c|std::abs(std::complex<double>(x, y))}}. |
[http://pubs.opengroup.org/onlinepubs/9699919799/functions/hypot.html POSIX specifies] that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations). | [http://pubs.opengroup.org/onlinepubs/9699919799/functions/hypot.html POSIX specifies] that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations). | ||
{{rrev|since=c++17| | {{rrev|since=c++17| | ||
− | Distance between two points {{tt|(x1,y1,z1)}} and {{tt|(x2,y2,z2)}} on 3D space can be calculated using 3-argument overload of {{tt|std::hypot}} as {{c|std::hypot(x2-x1, y2-y1, z2-z1)}}. | + | Distance between two points {{tt|(x1,y1,z1)}} and {{tt|(x2,y2,z2)}} on 3D space can be calculated using 3-argument overload of {{tt|std::hypot}} as {{c|std::hypot(x2 - x1, y2 - y1, z2 - z1)}}. |
}} | }} | ||
+ | |||
+ | {{cpp/numeric/math/additional overload note|hypot}} | ||
{{feature test macro|__cpp_lib_hypot|std=C++17|value=201603L|3-argument overload of {{tt|std::hypot}}}} | {{feature test macro|__cpp_lib_hypot|std=C++17|value=201603L|3-argument overload of {{tt|std::hypot}}}} | ||
Line 79: | Line 91: | ||
| | | | ||
|code= | |code= | ||
− | |||
− | |||
#include <cerrno> | #include <cerrno> | ||
#include <cfenv> | #include <cfenv> | ||
#include <cfloat> | #include <cfloat> | ||
+ | #include <cmath> | ||
#include <cstring> | #include <cstring> | ||
+ | #include <iostream> | ||
// #pragma STDC FENV_ACCESS ON | // #pragma STDC FENV_ACCESS ON | ||
+ | |||
+ | struct Point3D { float x, y, z; }; | ||
+ | |||
int main() | int main() | ||
{ | { | ||
Line 92: | Line 107: | ||
std::cout << "(1,1) cartesian is (" << std::hypot(1,1) | std::cout << "(1,1) cartesian is (" << std::hypot(1,1) | ||
<< ',' << std::atan2(1,1) << ") polar\n"; | << ',' << std::atan2(1,1) << ") polar\n"; | ||
− | + | ||
− | + | Point3D a{3.14, 2.71, 9.87}, b{1.14, 5.71, 3.87}; | |
// C++17 has 3-argument hypot overload: | // C++17 has 3-argument hypot overload: | ||
− | std::cout << "distance(a,b) = " << std::hypot(a.x-b.x, a.y-b.y, a.z-b.z) << '\n'; | + | std::cout << "distance(a,b) = " |
− | + | << std::hypot(a.x - b.x, a.y - b.y, a.z - b.z) << '\n'; | |
+ | |||
// special values | // special values | ||
std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n'; | std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n'; | ||
− | + | ||
// error handling | // error handling | ||
errno = 0; | errno = 0; | ||
std::feclearexcept(FE_ALL_EXCEPT); | std::feclearexcept(FE_ALL_EXCEPT); | ||
std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n'; | std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n'; | ||
+ | |||
if (errno == ERANGE) | if (errno == ERANGE) | ||
std::cout << " errno = ERANGE " << std::strerror(errno) << '\n'; | std::cout << " errno = ERANGE " << std::strerror(errno) << '\n'; |
Revision as of 01:39, 13 March 2023
Defined in header <cmath>
|
||
(1) | ||
float hypot ( float x, float y ); double hypot ( double x, double y ); |
(since C++11) (until C++23) |
|
/* floating-point-type */ hypot( /* floating-point-type */ x, /* floating-point-type */ y ); |
(since C++23) | |
float hypotf( float x, float y ); |
(2) | (since C++11) |
long double hypotl( long double x, long double y ); |
(3) | (since C++11) |
(4) | ||
float hypot ( float x, float y, float z ); double hypot ( double x, double y, double z ); |
(since C++17) (until C++23) |
|
/* floating-point-type */ hypot( /* floating-point-type */ x, /* floating-point-type */ y |
(since C++23) | |
Additional overloads (since C++11) |
||
Defined in header <cmath>
|
||
template< class Arithmetic1, Arithmetic2 > /* common-floating-point-type */ hypot( Arithmetic1 x, Arithmetic2 y ); |
(A) | |
template< class Arithmetic1, Arithmetic2, Arithmetic3 > /* common-floating-point-type */ |
(B) | (since C++17) |
std::hypot
for all cv-unqualified floating-point types as the type of the parameters x and y.(since C++23)std::hypot
for all cv-unqualified floating-point types as the type of the parameters x, y and z.(since C++23)
A,B) Additional overloads are provided for all other combinations of arithmetic types.
|
(since C++11) |
The value computed by the two-argument version of this function is the length of the hypotenuse of a right-angled triangle with sides of length x and y, or the distance of the point (x,y)
from the origin (0,0)
, or the magnitude of a complex number x+iy
The value computed by the three-argument version of this function is the distance of the point (x,y,z)
from the origin (0,0,0)
.
Contents |
Parameters
x, y, z | - | floating-point or integer values |
Return value
If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- std::hypot(x, y), std::hypot(y, x), and std::hypot(x, -y) are equivalent
- if one of the arguments is ±0, std::hypot(x, y) is equivalent to std::fabs called with the non-zero argument
- if one of the arguments is ±∞, std::hypot(x, y) returns +∞ even if the other argument is NaN
- otherwise, if any of the arguments is NaN, NaN is returned
Notes
Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD.
std::hypot(x, y) is equivalent to std::abs(std::complex<double>(x, y)).
POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).
Distance between two points |
(since C++17) |
The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their first argument num1, second argument num2 and the optional third argument num3:
|
(until C++23) |
If num1, num2 and num3 have arithmetic types, then
where /* common-floating-point-type */ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank among the types of num1, num2 and num3, arguments of integer type are considered to have the same floating-point conversion rank as double. If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. |
(since C++23) |
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_hypot |
201603L | (C++17) | 3-argument overload of std::hypot
|
Example
#include <cerrno> #include <cfenv> #include <cfloat> #include <cmath> #include <cstring> #include <iostream> // #pragma STDC FENV_ACCESS ON struct Point3D { float x, y, z; }; int main() { // typical usage std::cout << "(1,1) cartesian is (" << std::hypot(1,1) << ',' << std::atan2(1,1) << ") polar\n"; Point3D a{3.14, 2.71, 9.87}, b{1.14, 5.71, 3.87}; // C++17 has 3-argument hypot overload: std::cout << "distance(a,b) = " << std::hypot(a.x - b.x, a.y - b.y, a.z - b.z) << '\n'; // special values std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n'; if (errno == ERANGE) std::cout << " errno = ERANGE " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Output:
(1,1) cartesian is (1.41421,0.785398) polar distance(a,b) = 7 hypot(NAN,INFINITY) = inf hypot(DBL_MAX,DBL_MAX) = inf errno = ERANGE Numerical result out of range FE_OVERFLOW raised
See also
(C++11)(C++11) |
raises a number to the given power (xy) (function) |
(C++11)(C++11) |
computes square root (√x) (function) |
(C++11)(C++11)(C++11) |
computes cube root (3√x) (function) |
returns the magnitude of a complex number (function template) | |
C documentation for hypot
|