Difference between revisions of "cpp/numeric/special functions/comp ellint 1"
m (proper parameter name) |
(Applied P1467R9.) |
||
(15 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{cpp/title|comp_ellint_1|comp_ellint_1f|comp_ellint_1l}} | {{cpp/title|comp_ellint_1|comp_ellint_1f|comp_ellint_1l}} | ||
− | {{cpp/numeric/ | + | {{cpp/numeric/special_functions/navbar}} |
{{dcl begin}} | {{dcl begin}} | ||
− | {{dcl |num=1| | + | {{dcl header|cmath}} |
− | double comp_ellint_1( double k ); | + | {{dcl rev multi|num=1|since1=c++17|dcl1= |
− | + | double comp_ellint_1 ( double k ); | |
− | double | + | float comp_ellint_1 ( float k ); |
+ | long double comp_ellint_1 ( long double k ); | ||
+ | |since2=c++23|dcl2= | ||
+ | /* floating-point-type */ comp_ellint_1( /* floating-point-type */ k ); | ||
+ | }} | ||
+ | {{dcl|num=2|since=c++17| | ||
float comp_ellint_1f( float k ); | float comp_ellint_1f( float k ); | ||
+ | }} | ||
+ | {{dcl|num=3|since=c++17| | ||
long double comp_ellint_1l( long double k ); | long double comp_ellint_1l( long double k ); | ||
}} | }} | ||
− | {{dcl |num= | + | {{dcl h|[[#Notes|Additional overloads]]}} |
− | double comp_ellint_1( | + | {{dcl header|cmath}} |
+ | {{dcl|num=A|since=c++17| | ||
+ | template< class Integer > | ||
+ | double comp_ellint_1 ( Integer k ); | ||
}} | }} | ||
{{dcl end}} | {{dcl end}} | ||
− | @1@ Computes the | + | @1-3@ Computes the {{enwiki|Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind}} of {{c|k}}.{{rev inl|since=c++23| The library provides overloads of {{tt|std::comp_ellint_1}} for all cv-unqualified floating-point types as the type of the parameter {{c|k}}.}} |
− | + | @A@ Additional overloads are provided for all integer types, which are treated as {{c/core|double}}. | |
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par | k | elliptic modulus or eccentricity ( | + | {{par|k|elliptic modulus or eccentricity (a floating-point or integer value)}} |
{{par end}} | {{par end}} | ||
===Return value=== | ===Return value=== | ||
− | If no errors occur, value of the complete elliptic integral of the first kind of {{ | + | If no errors occur, value of the complete elliptic integral of the first kind of {{c|k}}, that is {{c|std::ellint_1(k, π/2)}}, is returned. |
===Error handling=== | ===Error handling=== | ||
− | Errors may be reported as specified in | + | Errors may be reported as specified in {{lc|math_errhandling}}. |
− | + | * If the argument is NaN, NaN is returned and domain error is not reported. | |
− | * If the argument is NaN, NaN is returned and domain error is not reported | + | * If {{math|{{!}}k{{!}}>1}}, a domain error may occur. |
− | * If {{math|{{!}}k{{!}}>1}}, a domain error may occur | + | |
===Notes=== | ===Notes=== | ||
− | {{cpp/numeric/ | + | {{cpp/numeric/special functions/older impl note}} |
− | An implementation of this function is also [ | + | An implementation of this function is also [https://www.boost.org/doc/libs/release/libs/math/doc/html/math_toolkit/ellint/ellint_1.html available in boost.math]. |
+ | |||
+ | {{cpp/numeric/special functions/additional integer overload note|comp_ellint_1}} | ||
===Example=== | ===Example=== | ||
− | {{example|code= | + | {{example |
+ | |The {{enwiki|Pendulum (mechanics)#Arbitrary-amplitude period|period of a pendulum}} of length {{math|l}}, given acceleration due to gravity {{math|g}}, and initial angle θ equals {{math|4⋅{{mrad|l/g}}⋅K(sin(θ/2))}}, where {{math|K}} is {{tt|std::comp_ellint_1}}. | ||
+ | |code= | ||
#include <cmath> | #include <cmath> | ||
#include <iostream> | #include <iostream> | ||
+ | #include <numbers> | ||
+ | |||
int main() | int main() | ||
{ | { | ||
− | double | + | constexpr double π{std::numbers::pi}; |
− | std::cout << "K(0) | + | |
− | << "π/2 | + | std::cout << "K(0) ≈ " << std::comp_ellint_1(0) << '\n' |
− | << "K(0.5) | + | << "π/2 ≈ " << π / 2 << '\n' |
− | << "F(0.5, π/2) | + | << "K(0.5) ≈ " << std::comp_ellint_1(0.5) << '\n' |
+ | << "F(0.5, π/2) ≈ " << std::ellint_1(0.5, π / 2) << '\n' | ||
+ | << "The period of a pendulum length 1m at 10° initial angle ≈ " | ||
+ | << 4 * std::sqrt(1 / 9.80665) * std::comp_ellint_1(std::sin(π / 18 / 2)) | ||
+ | << "s,\n" "whereas the linear approximation gives ≈ " | ||
+ | << 2 * π * std::sqrt(1 / 9.80665) << '\n'; | ||
} | } | ||
|output= | |output= | ||
− | K(0) | + | K(0) ≈ 1.5708 |
− | π/2 | + | π/2 ≈ 1.5708 |
− | K(0.5) | + | K(0.5) ≈ 1.68575 |
− | F(0.5, π/2) | + | F(0.5, π/2) ≈ 1.68575 |
+ | The period of a pendulum length 1 m at 10° initial angle ≈ 2.01024s, | ||
+ | whereas the linear approximation gives ≈ 2.00641 | ||
}} | }} | ||
− | |||
− | |||
− | |||
===See also=== | ===See also=== | ||
{{dsc begin}} | {{dsc begin}} | ||
− | {{dsc inc | cpp/numeric/ | + | {{dsc inc|cpp/numeric/special_functions/dsc ellint_1}} |
{{dsc end}} | {{dsc end}} | ||
− | [ | + | ===External links=== |
− | + | {{eli|[https://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html Weisstein, Eric W. "Complete Elliptic Integral of the First Kind."] From MathWorld — A Wolfram Web Resource.}} | |
− | + | ||
− | + | {{langlinks|de|es|fr|it|ja|pt|ru|zh}} | |
− | + | ||
− | + | ||
− | + | ||
− | + |
Latest revision as of 18:17, 21 March 2023
Defined in header <cmath>
|
||
(1) | ||
double comp_ellint_1 ( double k ); float comp_ellint_1 ( float k ); |
(since C++17) (until C++23) |
|
/* floating-point-type */ comp_ellint_1( /* floating-point-type */ k ); |
(since C++23) | |
float comp_ellint_1f( float k ); |
(2) | (since C++17) |
long double comp_ellint_1l( long double k ); |
(3) | (since C++17) |
Defined in header <cmath>
|
||
template< class Integer > double comp_ellint_1 ( Integer k ); |
(A) | (since C++17) |
std::comp_ellint_1
for all cv-unqualified floating-point types as the type of the parameter k.(since C++23)Contents |
[edit] Parameters
k | - | elliptic modulus or eccentricity (a floating-point or integer value) |
[edit] Return value
If no errors occur, value of the complete elliptic integral of the first kind of k, that is std::ellint_1(k, π/2), is returned.
[edit] Error handling
Errors may be reported as specified in math_errhandling.
- If the argument is NaN, NaN is returned and domain error is not reported.
- If |k|>1, a domain error may occur.
[edit] Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::comp_ellint_1(num) has the same effect as std::comp_ellint_1(static_cast<double>(num)).
[edit] Example
The period of a pendulum of length l, given acceleration due to gravity g, and initial angle θ equals 4⋅√l/g⋅K(sin(θ/2)), where K is std::comp_ellint_1
.
#include <cmath> #include <iostream> #include <numbers> int main() { constexpr double π{std::numbers::pi}; std::cout << "K(0) ≈ " << std::comp_ellint_1(0) << '\n' << "π/2 ≈ " << π / 2 << '\n' << "K(0.5) ≈ " << std::comp_ellint_1(0.5) << '\n' << "F(0.5, π/2) ≈ " << std::ellint_1(0.5, π / 2) << '\n' << "The period of a pendulum length 1m at 10° initial angle ≈ " << 4 * std::sqrt(1 / 9.80665) * std::comp_ellint_1(std::sin(π / 18 / 2)) << "s,\n" "whereas the linear approximation gives ≈ " << 2 * π * std::sqrt(1 / 9.80665) << '\n'; }
Output:
K(0) ≈ 1.5708 π/2 ≈ 1.5708 K(0.5) ≈ 1.68575 F(0.5, π/2) ≈ 1.68575 The period of a pendulum length 1 m at 10° initial angle ≈ 2.01024s, whereas the linear approximation gives ≈ 2.00641
[edit] See also
(C++17)(C++17)(C++17) |
(incomplete) elliptic integral of the first kind (function) |
[edit] External links
Weisstein, Eric W. "Complete Elliptic Integral of the First Kind." From MathWorld — A Wolfram Web Resource. |