Difference between revisions of "cpp/numeric/special functions/assoc legendre"
(→Return value: mathjax-ify) |
m (→Notes: turned the list into a table.) |
||
(10 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{cpp/title|assoc_legendre|assoc_legendref|assoc_legendrel}} | {{cpp/title|assoc_legendre|assoc_legendref|assoc_legendrel}} | ||
− | {{cpp/numeric/ | + | {{cpp/numeric/special_functions/navbar}} |
{{dcl begin}} | {{dcl begin}} | ||
− | {{dcl |num=1| | + | {{dcl header|cmath}} |
− | + | {{dcl rev multi|num=1|since1=c++17|dcl1= | |
− | double assoc_legendre( unsigned int n, unsigned int m, | + | float assoc_legendre ( unsigned int n, unsigned int m, float x ); |
− | double | + | double assoc_legendre ( unsigned int n, unsigned int m, double x ); |
+ | long double assoc_legendre ( unsigned int n, unsigned int m, long double x ); | ||
+ | |since2=c++23|dcl2= | ||
+ | /* floating-point-type */ assoc_legendre( unsigned int n, unsigned int m, | ||
+ | /* floating-point-type */ x ); | ||
+ | }} | ||
+ | {{dcl|num=2|since=c++17| | ||
float assoc_legendref( unsigned int n, unsigned int m, float x ); | float assoc_legendref( unsigned int n, unsigned int m, float x ); | ||
+ | }} | ||
+ | {{dcl|num=3|since=c++17| | ||
long double assoc_legendrel( unsigned int n, unsigned int m, long double x ); | long double assoc_legendrel( unsigned int n, unsigned int m, long double x ); | ||
}} | }} | ||
− | {{dcl |num= | + | {{dcl h|[[#Notes|Additional overloads]]}} |
− | double assoc_legendre( unsigned int n, unsigned int m, | + | {{dcl header|cmath}} |
+ | {{dcl|num=A|since=c++17| | ||
+ | template< class Integer > | ||
+ | double assoc_legendre ( unsigned int n, unsigned int m, Integer x ); | ||
}} | }} | ||
{{dcl end}} | {{dcl end}} | ||
− | @1@ Computes the | + | @1-3@ Computes the {{enwiki|Associated Legendre polynomials}} of the degree {{c|n}}, order {{c|m}}, and argument {{c|x}}.{{rev inl|since=c++23| The library provides overloads of {{tt|std::assoc_legendre}} for all cv-unqualified floating-point types as the type of the parameter {{c|x}}.}} |
− | + | @A@ Additional overloads are provided for all integer types, which are treated as {{c/core|double}}. | |
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par | n | the degree of the polynomial, | + | {{par|n|the degree of the polynomial, an unsigned integer value}} |
− | {{par | m | the order of the polynomial, | + | {{par|m|the order of the polynomial, an unsigned integer value}} |
− | {{par | x | the argument, | + | {{par|x|the argument, a floating-point or integer value}} |
{{par end}} | {{par end}} | ||
===Return value=== | ===Return value=== | ||
− | If no errors occur, value of the associated Legendre polynomial {{mathjax-or|1=\(\mathsf{P}_n^m\)|2=P{{su|p=m|b=n}}}} of {{ | + | If no errors occur, value of the associated Legendre polynomial {{mathjax-or|1=\(\mathsf{P}_n^m\)|2=P{{su|p=m|b=n}}}} of {{c|x}}, that is {{mathjax-or|1=\((1 - x^2) ^ {m/2} \: \frac{ \mathsf{d} ^ m}{ \mathsf{d}x ^ m} \, \mathsf{P}_n(x)\)|2=(1-x{{su|p=2}}){{su|p=m/2}} {{mfrac|d{{su|p=m}}|dx{{su|p=m}}}}P{{su|b=n}}(x)}}, is returned (where {{mathjax-or|1=\(\mathsf{P}_n(x)\)|2=P{{su|b=n}}(x)}} is the unassociated Legendre polynomial, {{c|std::legendre(n, x)}}). |
− | Note that the [ | + | Note that the [https://mathworld.wolfram.com/Condon-ShortleyPhase.html Condon-Shortley phase term] {{mathjax-or|1=\((-1)^m\)|2=(-1){{su|p=m}}}} is omitted from this definition. |
===Error handling=== | ===Error handling=== | ||
Errors may be reported as specified in [[cpp/numeric/math/math_errhandling|math_errhandling]] | Errors may be reported as specified in [[cpp/numeric/math/math_errhandling|math_errhandling]] | ||
− | |||
* If the argument is NaN, NaN is returned and domain error is not reported | * If the argument is NaN, NaN is returned and domain error is not reported | ||
* If {{math|{{!}}x{{!}} > 1}}, a domain error may occur | * If {{math|{{!}}x{{!}} > 1}}, a domain error may occur | ||
− | * If {{tt|n}} is greater or equal to 128, the behavior is implementation-defined | + | * If {{tt|n}} is greater or equal to 128, the behavior is implementation-defined |
===Notes=== | ===Notes=== | ||
− | {{cpp/numeric/ | + | {{cpp/numeric/special functions/older impl note}} |
− | An implementation of this function is also [ | + | An implementation of this function is also [https://www.boost.org/doc/libs/release/libs/math/doc/html/math_toolkit/sf_poly/legendre.html available in boost.math] as {{tt|boost::math::legendre_p}}, except that the boost.math definition includes the Condon-Shortley phase term. |
The first few associated Legendre polynomials are: | The first few associated Legendre polynomials are: | ||
− | + | ||
− | + | {| class="wikitable" style="font-size:95%; text-align:center;" | |
− | + | |- | |
− | + | ! Function | |
− | + | ! Polynomial | |
− | + | |- style="height:45px;" | |
+ | | {{nbsp|4}}{{co|1=assoc_legendre(0, 0, x)}}{{nbsp|4}} || 1 | ||
+ | |- style="height:45px;" | ||
+ | | {{co|1=assoc_legendre(1, 0, x)}} || {{math|x}} | ||
+ | |- style="height:45px;" | ||
+ | | {{co|1=assoc_legendre(1, 1, x)}} || {{math|(1 - x{{su|p=2}}){{su|p=1/2}}}} | ||
+ | |- style="height:45px;" | ||
+ | | {{co|1=assoc_legendre(2, 0, x)}} || {{math|{{mfrac|1|2}}(3x{{su|p=2}} - 1)}} | ||
+ | |- style="height:45px;" | ||
+ | | {{co|1=assoc_legendre(2, 1, x)}} || {{nbsp|4}}{{math|3x(1 - x{{su|p=2}}){{su|p=1/2}}}}{{nbsp|4}} | ||
+ | |- style="height:45px;" | ||
+ | | {{co|1=assoc_legendre(2, 2, x)}} || {{math|3(1 - x{{su|p=2}})}} | ||
+ | |} | ||
+ | |||
+ | {{cpp/numeric/special functions/additional integer overload note|assoc_legendre}} | ||
===Example=== | ===Example=== | ||
− | {{example|code= | + | {{example |
+ | |code= | ||
#include <cmath> | #include <cmath> | ||
#include <iostream> | #include <iostream> | ||
− | double P20(double x) { return 0.5*(3*x*x-1); } | + | |
− | double P21(double x) { return 3.0*x*std::sqrt(1-x*x); } | + | double P20(double x) |
− | double P22(double x) { return 3*(1-x*x); } | + | { |
+ | return 0.5 * (3 * x * x - 1); | ||
+ | } | ||
+ | |||
+ | double P21(double x) | ||
+ | { | ||
+ | return 3.0 * x * std::sqrt(1 - x * x); | ||
+ | } | ||
+ | |||
+ | double P22(double x) | ||
+ | { | ||
+ | return 3 * (1 - x * x); | ||
+ | } | ||
+ | |||
int main() | int main() | ||
{ | { | ||
Line 71: | Line 109: | ||
===See also=== | ===See also=== | ||
{{dsc begin}} | {{dsc begin}} | ||
− | {{dsc inc | cpp/numeric/ | + | {{dsc inc|cpp/numeric/special functions/dsc legendre}} |
{{dsc end}} | {{dsc end}} | ||
===External links=== | ===External links=== | ||
− | [ | + | {{eli|[https://mathworld.wolfram.com/AssociatedLegendrePolynomial.html Weisstein, Eric W. "Associated Legendre Polynomial."] From MathWorld — A Wolfram Web Resource.}} |
− | + | {{langlinks|de|es|fr|it|ja|pt|ru|zh}} | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Latest revision as of 14:07, 22 March 2023
Defined in header <cmath>
|
||
(1) | ||
float assoc_legendre ( unsigned int n, unsigned int m, float x ); double assoc_legendre ( unsigned int n, unsigned int m, double x ); |
(since C++17) (until C++23) |
|
/* floating-point-type */ assoc_legendre( unsigned int n, unsigned int m, /* floating-point-type */ x ); |
(since C++23) | |
float assoc_legendref( unsigned int n, unsigned int m, float x ); |
(2) | (since C++17) |
long double assoc_legendrel( unsigned int n, unsigned int m, long double x ); |
(3) | (since C++17) |
Defined in header <cmath>
|
||
template< class Integer > double assoc_legendre ( unsigned int n, unsigned int m, Integer x ); |
(A) | (since C++17) |
std::assoc_legendre
for all cv-unqualified floating-point types as the type of the parameter x.(since C++23)Contents |
[edit] Parameters
n | - | the degree of the polynomial, an unsigned integer value |
m | - | the order of the polynomial, an unsigned integer value |
x | - | the argument, a floating-point or integer value |
[edit] Return value
If no errors occur, value of the associated Legendre polynomial Pmn of x, that is (1-x2)m/2dm |
dxm |
Note that the Condon-Shortley phase term (-1)m is omitted from this definition.
[edit] Error handling
Errors may be reported as specified in math_errhandling
- If the argument is NaN, NaN is returned and domain error is not reported
- If |x| > 1, a domain error may occur
- If
n
is greater or equal to 128, the behavior is implementation-defined
[edit] Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math as boost::math::legendre_p
, except that the boost.math definition includes the Condon-Shortley phase term.
The first few associated Legendre polynomials are:
Function | Polynomial | ||
---|---|---|---|
assoc_legendre(0, 0, x) | 1 | ||
assoc_legendre(1, 0, x) | x | ||
assoc_legendre(1, 1, x) | (1 - x2)1/2 | ||
assoc_legendre(2, 0, x) |
| ||
assoc_legendre(2, 1, x) | 3x(1 - x2)1/2 | ||
assoc_legendre(2, 2, x) | 3(1 - x2) |
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::assoc_legendre(int_num1, int_num2, num) has the same effect as std::assoc_legendre(int_num1, int_num2, static_cast<double>(num)).
[edit] Example
#include <cmath> #include <iostream> double P20(double x) { return 0.5 * (3 * x * x - 1); } double P21(double x) { return 3.0 * x * std::sqrt(1 - x * x); } double P22(double x) { return 3 * (1 - x * x); } int main() { // spot-checks std::cout << std::assoc_legendre(2, 0, 0.5) << '=' << P20(0.5) << '\n' << std::assoc_legendre(2, 1, 0.5) << '=' << P21(0.5) << '\n' << std::assoc_legendre(2, 2, 0.5) << '=' << P22(0.5) << '\n'; }
Output:
-0.125=-0.125 1.29904=1.29904 2.25=2.25
[edit] See also
(C++17)(C++17)(C++17) |
Legendre polynomials (function) |
[edit] External links
Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld — A Wolfram Web Resource. |