Difference between revisions of "cpp/numeric/special functions/ellint 1"
m (Cubbi moved page cpp/numeric/special math/ellint 1 to cpp/numeric/special functions/ellint 1: to special_functions) |
m (→Example: aligned the output.) |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{cpp/title|ellint_1|ellint_1f|ellint_1l}} | {{cpp/title|ellint_1|ellint_1f|ellint_1l}} | ||
− | {{cpp/numeric/ | + | {{cpp/numeric/special_functions/navbar}} |
{{dcl begin}} | {{dcl begin}} | ||
− | {{dcl |num=1| | + | {{dcl header|cmath}} |
− | + | {{dcl rev multi|num=1|since1=c++17|dcl1= | |
− | + | float ellint_1 ( float k, float phi ); | |
− | long double | + | double ellint_1 ( double k, double phi ); |
+ | long double ellint_1 ( long double k, long double phi ); | ||
+ | |since2=c++23|dcl2= | ||
+ | /* floating-point-type */ ellint_1( /* floating-point-type */ k, | ||
+ | /* floating-point-type */ phi ); | ||
}} | }} | ||
− | {{dcl |num=2|since=c++17| | + | {{dcl|num=2|since=c++17| |
− | + | float ellint_1f( float k, float phi ); | |
+ | }} | ||
+ | {{dcl|num=3|since=c++17| | ||
+ | long double ellint_1l( long double k, long double phi ); | ||
+ | }} | ||
+ | {{dcl h|[[#Notes|Additional overloads]]}} | ||
+ | {{dcl header|cmath}} | ||
+ | {{dcl|num=A|since=c++17| | ||
+ | template< class Arithmetic1, class Arithmetic2 > | ||
+ | /* common-floating-point-type */ | ||
+ | ellint_1( Arithmetic1 k, Arithmetic2 phi ); | ||
}} | }} | ||
{{dcl end}} | {{dcl end}} | ||
− | @1@ Computes the | + | @1-3@ Computes the {{enwiki|Elliptic integral#Elliptic integral of the first kind|incomplete elliptic integral of the first kind}} of {{c|k}} and {{c|phi}}.{{rev inl|since=c++23| The library provides overloads of {{tt|std::ellint_1}} for all cv-unqualified floating-point types as the type of the parameters {{c|k}} and {{c|phi}}.}} |
− | + | @A@ Additional overloads are provided for all other combinations of arithmetic types. | |
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par | k | elliptic modulus or eccentricity ( | + | {{par|k|elliptic modulus or eccentricity (a floating-point or integer value)}} |
− | {{par | | + | {{par|phi|Jacobi amplitude (a floating-point or integer value, measured in radians)}} |
{{par end}} | {{par end}} | ||
===Return value=== | ===Return value=== | ||
− | If no errors occur, value of the incomplete elliptic integral of the first kind of {{ | + | If no errors occur, value of the incomplete elliptic integral of the first kind of {{c|k}} and {{c|phi}}, that is {{math|{{minteg|0|phi|{{mfrac|dθ|{{mrad|1-k{{su|p=2}}sin{{su|p=2}}θ}}}}}}}}, is returned. |
===Error handling=== | ===Error handling=== | ||
− | Errors may be reported as specified in | + | Errors may be reported as specified in {{lc|math_errhandling}}: |
− | + | * If the argument is NaN, NaN is returned and domain error is not reported. | |
− | * If the argument is NaN, NaN is returned and domain error is not reported | + | * If {{math|{{!}}k{{!}}>1}}, a domain error may occur. |
− | * If {{math|{{!}}k{{!}}>1}}, a domain error may occur | + | |
===Notes=== | ===Notes=== | ||
− | {{cpp/numeric/ | + | {{cpp/numeric/special functions/older impl note}} |
− | An implementation of this function is also [ | + | An implementation of this function is also available in [https://www.boost.org/doc/libs/release/libs/math/doc/html/math_toolkit/ellint/ellint_1.html boost.math]. |
+ | |||
+ | {{cpp/numeric/special functions/additional overload note|ellint_1}} | ||
===Example=== | ===Example=== | ||
− | {{example|code= | + | {{example |
+ | |code= | ||
#include <cmath> | #include <cmath> | ||
#include <iostream> | #include <iostream> | ||
+ | #include <numbers> | ||
+ | |||
int main() | int main() | ||
{ | { | ||
− | double hpi = std:: | + | const double hpi = std::numbers::pi / 2.0; |
− | std::cout << "F(0,π/2) = " << std::ellint_1(0, hpi) << '\n' | + | |
+ | std::cout << "F(0,π/2) = " << std::ellint_1(0, hpi) << '\n' | ||
<< "F(0,-π/2) = " << std::ellint_1(0, -hpi) << '\n' | << "F(0,-π/2) = " << std::ellint_1(0, -hpi) << '\n' | ||
− | << "π/2 = " << hpi << '\n' | + | << "π/2 = " << hpi << '\n' |
− | << "F(0.7,0) = " << std::ellint_1(0.7, 0) << '\n'; | + | << "F(0.7,0) = " << std::ellint_1(0.7, 0) << '\n'; |
} | } | ||
|output= | |output= | ||
− | F(0,π/2) = 1.5708 | + | F(0,π/2) = 1.5708 |
F(0,-π/2) = -1.5708 | F(0,-π/2) = -1.5708 | ||
− | π/2 = 1.5708 | + | π/2 = 1.5708 |
− | F(0.7,0) = 0 | + | F(0.7,0) = 0 |
}} | }} | ||
− | |||
− | |||
− | |||
===See also=== | ===See also=== | ||
{{dsc begin}} | {{dsc begin}} | ||
− | {{dsc inc | cpp/numeric/ | + | {{dsc inc|cpp/numeric/special_functions/dsc comp_ellint_1}} |
{{dsc end}} | {{dsc end}} | ||
− | [ | + | ===External links=== |
− | + | {{eli|[https://mathworld.wolfram.com/EllipticIntegraloftheFirstKind.html Weisstein, Eric W. "Elliptic Integral of the First Kind."] From MathWorld — A Wolfram Web Resource.}} | |
− | + | ||
− | + | {{langlinks|de|es|fr|it|ja|pt|ru|zh}} | |
− | + | ||
− | + | ||
− | + | ||
− | + |
Latest revision as of 15:11, 22 March 2023
Defined in header <cmath>
|
||
(1) | ||
float ellint_1 ( float k, float phi ); double ellint_1 ( double k, double phi ); |
(since C++17) (until C++23) |
|
/* floating-point-type */ ellint_1( /* floating-point-type */ k, /* floating-point-type */ phi ); |
(since C++23) | |
float ellint_1f( float k, float phi ); |
(2) | (since C++17) |
long double ellint_1l( long double k, long double phi ); |
(3) | (since C++17) |
Defined in header <cmath>
|
||
template< class Arithmetic1, class Arithmetic2 > /* common-floating-point-type */ |
(A) | (since C++17) |
std::ellint_1
for all cv-unqualified floating-point types as the type of the parameters k and phi.(since C++23)Contents |
[edit] Parameters
k | - | elliptic modulus or eccentricity (a floating-point or integer value) |
phi | - | Jacobi amplitude (a floating-point or integer value, measured in radians) |
[edit] Return value
If no errors occur, value of the incomplete elliptic integral of the first kind of k and phi, that is ∫phi0dθ |
√1-k2sin2θ |
[edit] Error handling
Errors may be reported as specified in math_errhandling:
- If the argument is NaN, NaN is returned and domain error is not reported.
- If |k|>1, a domain error may occur.
[edit] Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:
|
(until C++23) |
If num1 and num2 have arithmetic types, then std::ellint_1(num1, num2) has the same effect as std::ellint_1(static_cast</* common-floating-point-type */>(num1), If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. |
(since C++23) |
[edit] Example
#include <cmath> #include <iostream> #include <numbers> int main() { const double hpi = std::numbers::pi / 2.0; std::cout << "F(0,π/2) = " << std::ellint_1(0, hpi) << '\n' << "F(0,-π/2) = " << std::ellint_1(0, -hpi) << '\n' << "π/2 = " << hpi << '\n' << "F(0.7,0) = " << std::ellint_1(0.7, 0) << '\n'; }
Output:
F(0,π/2) = 1.5708 F(0,-π/2) = -1.5708 π/2 = 1.5708 F(0.7,0) = 0
[edit] See also
(C++17)(C++17)(C++17) |
(complete) elliptic integral of the first kind (function) |
[edit] External links
Weisstein, Eric W. "Elliptic Integral of the First Kind." From MathWorld — A Wolfram Web Resource. |