Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/algorithm/ranges/is sorted until"

From cppreference.com
< cpp‎ | algorithm‎ | ranges
m (E ~)
m (Example: +<array>.)
 
(One intermediate revision by one user not shown)
Line 2: Line 2:
 
{{cpp/algorithm/ranges/navbar}}
 
{{cpp/algorithm/ranges/navbar}}
 
{{dcl begin}}
 
{{dcl begin}}
{{dcl header | algorithm}}
+
{{dcl header|algorithm}}
{{dcl h | Call signature}}
+
{{dcl h|Call signature}}
{{dcl | num=1 | since=c++20 |1=
+
{{dcl|num=1|since=c++20|1=
 
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
 
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
 
           std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less >
 
           std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less >
constexpr I is_sorted_until( I first, S last, Comp comp = {}, Proj proj = {} );
+
constexpr I
 +
    is_sorted_until( I first, S last, Comp comp = {}, Proj proj = {} );
 
}}
 
}}
{{dcl | num=2 | since=c++20 |1=
+
{{dcl|num=2|since=c++20|1=
 
template< std::forward_range R, class Proj = std::identity,
 
template< std::forward_range R, class Proj = std::identity,
 
           std::indirect_strict_weak_order<
 
           std::indirect_strict_weak_order<
 
               std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less >
 
               std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less >
  constexpr ranges::borrowed_iterator_t<R>
+
constexpr ranges::borrowed_iterator_t<R>
is_sorted_until( R&& r, Comp comp = {}, Proj proj = {} );
+
    is_sorted_until( R&& r, Comp comp = {}, Proj proj = {} );
 
}}
 
}}
 
{{dcl end}}
 
{{dcl end}}
  
Examines the range {{tt|[first, last)}} and finds the largest range beginning at {{tt|first}} in which the elements are sorted in non-descending order.
+
Examines the range {{range|first|last}} and finds the largest range beginning at {{c|first}} in which the elements are sorted in non-descending order.
  
A sequence is sorted with respect to a comparator {{tt|comp}} if for any iterator {{tt|it}} pointing to the sequence and any non-negative integer {{tt|n}} such that {{tt|it + n}} is a valid iterator pointing to an element of the sequence, {{c|std::invoke(comp, std::invoke(proj, *(it + n)), std::invoke(proj, *it))}} evaluates to {{tt|false}}.
+
A sequence is sorted with respect to a comparator {{c|comp}} if for any iterator {{tt|it}} pointing to the sequence and any non-negative integer {{tt|n}} such that {{tt|it + n}} is a valid iterator pointing to an element of the sequence, {{c|std::invoke(comp, std::invoke(proj, *(it + n)), std::invoke(proj, *it))}} evaluates to {{c|false}}.
  
@1@ Elements are compared using the given binary comparison function {{tt|comp}}.
+
@1@ Elements are compared using the given binary comparison function {{c|comp}}.
@2@ Same as {{v|1}}, but uses {{tt|r}} as the source range, as if using {{c|ranges::begin(r)}} as {{tt|first}} and {{c|ranges::end(r)}} as {{tt|last}}.
+
@2@ Same as {{v|1}}, but uses {{c|r}} as the source range, as if using {{c|ranges::begin(r)}} as {{c|first}} and {{c|ranges::end(r)}} as {{c|last}}.
  
 
{{cpp/ranges/niebloid}}
 
{{cpp/ranges/niebloid}}
Line 29: Line 30:
 
===Parameters===
 
===Parameters===
 
{{par begin}}
 
{{par begin}}
{{par | first, last | iterator-sentinel defining the range to find its sorted upper bound}}
+
{{par|first, last|iterator-sentinel defining the range to find its sorted upper bound}}
{{par | r | the range to find its sorted  upper bound}}
+
{{par|r|the range to find its sorted  upper bound}}
{{par | comp | comparison function to apply to the projected elements}}
+
{{par|comp|comparison function to apply to the projected elements}}
{{par | proj | projection to apply to the elements}}
+
{{par|proj|projection to apply to the elements}}
 
{{par end}}
 
{{par end}}
  
 
===Return value===
 
===Return value===
The upper bound of the largest range beginning at {{tt|first}} in which the elements are sorted in non-descending order. That is, the last iterator {{tt|it}} for which range {{tt|[first, it)}} is sorted.
+
The upper bound of the largest range beginning at {{c|first}} in which the elements are sorted in non-descending order. That is, the last iterator {{tt|it}} for which range {{range|first|it}} is sorted.
  
 
===Complexity===
 
===Complexity===
Linear in the distance between {{tt|first}} and {{tt|last}}.
+
Linear in the distance between {{c|first}} and {{c|last}}.
  
 
===Possible implementation===
 
===Possible implementation===
 
{{eq fun
 
{{eq fun
| 1=
+
|1=
struct is_sorted_until_fn {
+
struct is_sorted_until_fn
  template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
+
{
          std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less>
+
    template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
  constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
+
            std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less>
  {
+
    constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
      if (first == last) {
+
    {
          return first;
+
        if (first == last)
      }
+
            return first;
  
      auto next = first;
+
        for (auto next = first; ++next != last; first = next)
      while (++next != last) {
+
            if (std::invoke(comp, std::invoke(proj, *next), std::invoke(proj, *first)))
          if (std::invoke(comp, std::invoke(proj, *next), std::invoke(proj, *first))) {
+
                return next;
              return next;
+
          }
+
          first = next;
+
      }
+
  
      return first;
+
        return first;
  }
+
    }
 
    
 
    
  template< ranges::forward_range R, class Proj = std::identity,
+
    template<ranges::forward_range R, class Proj = std::identity,
          std::indirect_strict_weak_order<
+
            std::indirect_strict_weak_order<
              std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less >
+
                std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>
  constexpr ranges::borrowed_iterator_t<R>
+
    constexpr ranges::borrowed_iterator_t<R>
  operator()( R&& r, Comp comp = {}, Proj proj = {} ) const
+
        operator()(R&& r, Comp comp = {}, Proj proj = {}) const
  {
+
    {
      return (*this)(ranges::begin(r), ranges::end(r),
+
        return (*this)(ranges::begin(r), ranges::end(r), std::ref(comp), std::ref(proj));
                    std::ref(comp), std::ref(proj));
+
    }
  }
+
 
};
 
};
  
Line 79: Line 75:
  
 
===Notes===
 
===Notes===
{{tt|ranges::is_sorted_until}} returns an iterator equal to {{tt|last}} for empty ranges and ranges of length one.
+
{{tt|ranges::is_sorted_until}} returns an iterator equal to {{c|last}} for empty ranges and ranges of length one.
  
 
===Example===
 
===Example===
 
{{example
 
{{example
| p=true
+
|code=
| code=
+
#include <array>
 
#include <algorithm>
 
#include <algorithm>
 
#include <iostream>
 
#include <iostream>
Line 93: Line 89:
 
{
 
{
 
     std::random_device rd;
 
     std::random_device rd;
     std::mt19937 g{rd()};
+
     std::mt19937 g {rd()};
 
     std::array nums {3, 1, 4, 1, 5, 9};
 
     std::array nums {3, 1, 4, 1, 5, 9};
 
   
 
   
 
     constexpr int min_sorted_size = 4;
 
     constexpr int min_sorted_size = 4;
 
     int sorted_size = 0;
 
     int sorted_size = 0;
     do {
+
     do
 +
    {
 
         std::ranges::shuffle(nums, g);
 
         std::ranges::shuffle(nums, g);
 
         const auto sorted_end = std::ranges::is_sorted_until(nums);
 
         const auto sorted_end = std::ranges::is_sorted_until(nums);
Line 105: Line 102:
 
         std::ranges::copy(nums, std::ostream_iterator<int>(std::cout, " "));
 
         std::ranges::copy(nums, std::ostream_iterator<int>(std::cout, " "));
 
         std::cout << " : " << sorted_size << " leading sorted element(s)\n";
 
         std::cout << " : " << sorted_size << " leading sorted element(s)\n";
     } while (sorted_size < min_sorted_size);
+
     }
 +
    while (sorted_size < min_sorted_size);
 
}
 
}
| output=
+
|p=true
 +
|output=
 
4 1 9 5 1 3  : 1 leading sorted element(s)
 
4 1 9 5 1 3  : 1 leading sorted element(s)
 
4 5 9 3 1 1  : 3 leading sorted element(s)
 
4 5 9 3 1 1  : 3 leading sorted element(s)
Line 119: Line 118:
 
===See also===
 
===See also===
 
{{dsc begin}}
 
{{dsc begin}}
{{dsc inc | cpp/algorithm/ranges/dsc is_sorted}}
+
{{dsc inc|cpp/algorithm/ranges/dsc is_sorted}}
{{dsc inc | cpp/algorithm/dsc is_sorted_until}}
+
{{dsc inc|cpp/algorithm/dsc is_sorted_until}}
 
{{dsc end}}
 
{{dsc end}}
  
 
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}
 
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}

Latest revision as of 15:11, 17 April 2023

 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
is_sorted_until
   
       
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,

          std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less >
constexpr I

    is_sorted_until( I first, S last, Comp comp = {}, Proj proj = {} );
(1) (since C++20)
template< std::forward_range R, class Proj = std::identity,

          std::indirect_strict_weak_order<
              std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less >
constexpr ranges::borrowed_iterator_t<R>

    is_sorted_until( R&& r, Comp comp = {}, Proj proj = {} );
(2) (since C++20)

Examines the range [firstlast) and finds the largest range beginning at first in which the elements are sorted in non-descending order.

A sequence is sorted with respect to a comparator comp if for any iterator it pointing to the sequence and any non-negative integer n such that it + n is a valid iterator pointing to an element of the sequence, std::invoke(comp, std::invoke(proj, *(it + n)), std::invoke(proj, *it)) evaluates to false.

1) Elements are compared using the given binary comparison function comp.
2) Same as (1), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Contents

[edit] Parameters

first, last - iterator-sentinel defining the range to find its sorted upper bound
r - the range to find its sorted upper bound
comp - comparison function to apply to the projected elements
proj - projection to apply to the elements

[edit] Return value

The upper bound of the largest range beginning at first in which the elements are sorted in non-descending order. That is, the last iterator it for which range [firstit) is sorted.

[edit] Complexity

Linear in the distance between first and last.

[edit] Possible implementation

struct is_sorted_until_fn
{
    template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             std::indirect_strict_weak_order<std::projected<I, Proj>> Comp = ranges::less>
    constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
    {
        if (first == last)
            return first;
 
        for (auto next = first; ++next != last; first = next)
            if (std::invoke(comp, std::invoke(proj, *next), std::invoke(proj, *first)))
                return next;
 
        return first;
    }
 
    template<ranges::forward_range R, class Proj = std::identity,
             std::indirect_strict_weak_order<
                 std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::ref(comp), std::ref(proj));
    }
};
 
inline constexpr is_sorted_until_fn is_sorted_until;

[edit] Notes

ranges::is_sorted_until returns an iterator equal to last for empty ranges and ranges of length one.

[edit] Example

#include <array>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <random>
 
int main()
{
    std::random_device rd;
    std::mt19937 g {rd()};
    std::array nums {3, 1, 4, 1, 5, 9};
 
    constexpr int min_sorted_size = 4;
    int sorted_size = 0;
    do
    {
        std::ranges::shuffle(nums, g);
        const auto sorted_end = std::ranges::is_sorted_until(nums);
        sorted_size = std::ranges::distance(nums.begin(), sorted_end);
 
        std::ranges::copy(nums, std::ostream_iterator<int>(std::cout, " "));
        std::cout << " : " << sorted_size << " leading sorted element(s)\n";
    }
    while (sorted_size < min_sorted_size);
}

Possible output:

4 1 9 5 1 3  : 1 leading sorted element(s)
4 5 9 3 1 1  : 3 leading sorted element(s)
9 3 1 4 5 1  : 1 leading sorted element(s)
1 3 5 4 1 9  : 3 leading sorted element(s)
5 9 1 1 3 4  : 2 leading sorted element(s)
4 9 1 5 1 3  : 2 leading sorted element(s)
1 1 4 9 5 3  : 4 leading sorted element(s)

[edit] See also

checks whether a range is sorted into ascending order
(niebloid)[edit]
finds the largest sorted subrange
(function template) [edit]