Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/complex/asinh"

From cppreference.com
< cpp‎ | numeric‎ | complex
m (+link to acosh(std::complex), atanh(std::complex), asinh and C documentation, -2 links)
m (fmt, headers sorted)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{cpp/title|asinh{{small|(std::complex)}}}}
 
{{cpp/title|asinh{{small|(std::complex)}}}}
 
{{cpp/numeric/complex/navbar}}
 
{{cpp/numeric/complex/navbar}}
{{ddcl | header=complex | since=c++11 | 1=
+
{{ddcl|header=complex|since=c++11|1=
 
template< class T >  
 
template< class T >  
 
complex<T> asinh( const complex<T>& z );
 
complex<T> asinh( const complex<T>& z );
 
}}
 
}}
  
Computes complex area hyperbolic sine of a complex value {{tt|z}}.  
+
Computes complex arc hyperbolic sine of a complex value {{c|z}} with branch cuts outside the interval {{math|[−i; +i]}} along the imaginary axis.
  
 
===Parameters===
 
===Parameters===
 
{{par begin}}
 
{{par begin}}
{{par | z | complex value}}
+
{{par|z|complex value}}
 
{{par end}}
 
{{par end}}
  
 
===Return value===
 
===Return value===
 +
If no errors occur, the complex arc hyperbolic sine of {{c|z}} is returned, in the range of a strip mathematically unbounded along the real axis and in the interval {{math|[−iπ/2; +iπ/2]}} along the imaginary axis.
  
Complex area hyperbolic sine of {{tt|z}}
+
===Error handling and special values===
 +
Errors are reported consistent with {{lc|math_errhandling}}.
 +
 
 +
If the implementation supports IEEE floating-point arithmetic,
 +
* {{c|std::asinh(std::conj(z)) {{==}} std::conj(std::asinh(z))}}
 +
* {{c|std::asinh(-z) {{==}} -std::asinh(z)}}
 +
* If {{c|z}} is {{tt|(+0,+0)}}, the result is {{tt|(+0,+0)}}
 +
* If {{c|z}} is {{tt|(x,+∞)}} (for any positive finite x), the result is {{tt|(+∞,π/2)}}
 +
* If {{c|z}} is {{tt|(x,NaN)}} (for any finite x), the result is {{tt|(NaN,NaN)}} and {{lc|FE_INVALID}} may be raised
 +
* If {{c|z}} is {{tt|(+∞,y)}} (for any positive finite y), the result is {{tt|(+∞,+0)}}
 +
* If {{c|z}} is {{tt|(+∞,+∞)}}, the result is {{tt|(+∞,π/4)}}
 +
* If {{c|z}} is {{tt|(+∞,NaN)}}, the result is {{tt|(+∞,NaN)}}
 +
* If {{c|z}} is {{tt|(NaN,+0)}}, the result is {{tt|(NaN,+0)}}
 +
* If {{c|z}} is {{tt|(NaN,y)}} (for any finite nonzero y), the result is {{tt|(NaN,NaN)}} and {{lc|FE_INVALID}} may be raised
 +
* If {{c|z}} is {{tt|(NaN,+∞)}}, the result is {{tt|(±∞,NaN)}} (the sign of the real part is unspecified)
 +
* If {{c|z}} is {{tt|(NaN,NaN)}}, the result is {{tt|(NaN,NaN)}}
 +
 
 +
===Notes===
 +
Although the C++ standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".
 +
 
 +
Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments {{math|(-''i''∞,-''i'')}} and {{math|(''i'',''i''∞)}} of the imaginary axis.
 +
 
 +
The mathematical definition of the principal value of the inverse hyperbolic sine is {{math|asinh z {{=}} ln(z + {{mrad|1+z{{su|p=2}}}})}}.
 +
 
 +
For any {{c|z}}, {{math|asinh(z) {{=}} {{mfrac|asin(iz)|i}}}}.
 +
 
 +
===Example===
 +
{{example|
 +
|code=
 +
#include <complex>
 +
#include <iostream>
 +
 
 +
int main()
 +
{
 +
    std::cout << std::fixed;
 +
    std::complex<double> z1(0.0, -2.0);
 +
    std::cout << "asinh" << z1 << " = " << std::asinh(z1) << '\n';
 +
 
 +
    std::complex<double> z2(-0.0, -2);
 +
    std::cout << "asinh" << z2 << " (the other side of the cut) = "
 +
              << std::asinh(z2) << '\n';
 +
 
 +
    // for any z, asinh(z) = asin(iz) / i
 +
    std::complex<double> z3(1.0, 2.0);
 +
    std::complex<double> i(0.0, 1.0);
 +
    std::cout << "asinh" << z3 << " = " << std::asinh(z3) << '\n'
 +
              << "asin" << z3 * i << " / i = " << std::asin(z3 * i) / i << '\n';
 +
}
 +
|output=
 +
asinh(0.000000,-2.000000) = (1.316958,-1.570796)
 +
asinh(-0.000000,-2.000000) (the other side of the cut) = (-1.316958,-1.570796)
 +
asinh(1.000000,2.000000) = (1.469352,1.063440)
 +
asin(-2.000000,1.000000) / i = (1.469352,1.063440)
 +
}}
  
 
===See also===
 
===See also===
 
{{dsc begin}}
 
{{dsc begin}}
{{dsc inc | cpp/numeric/complex/dsc acosh}}
+
{{dsc inc|cpp/numeric/complex/dsc acosh}}
{{dsc inc | cpp/numeric/complex/dsc atanh}}
+
{{dsc inc|cpp/numeric/complex/dsc atanh}}
{{dsc inc | cpp/numeric/complex/dsc sinh}}
+
{{dsc inc|cpp/numeric/complex/dsc sinh}}
{{dsc inc | cpp/numeric/math/dsc asinh}}
+
{{dsc inc|cpp/numeric/math/dsc asinh}}
{{dsc see c | c/numeric/complex/casinh}}
+
{{dsc see c|c/numeric/complex/casinh}}
 
{{dsc end}}
 
{{dsc end}}
  
[[de:cpp/numeric/complex/asinh]]
+
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}
[[es:cpp/numeric/complex/asinh]]
+
[[fr:cpp/numeric/complex/asinh]]
+
[[it:cpp/numeric/complex/asinh]]
+
[[ja:cpp/numeric/complex/asinh]]
+
[[pt:cpp/numeric/complex/asinh]]
+
[[ru:cpp/numeric/complex/asinh]]
+
[[zh:cpp/numeric/complex/asinh]]
+

Latest revision as of 09:03, 21 April 2023

 
 
 
 
Defined in header <complex>
template< class T >
complex<T> asinh( const complex<T>& z );
(since C++11)

Computes complex arc hyperbolic sine of a complex value z with branch cuts outside the interval [−i; +i] along the imaginary axis.

Contents

[edit] Parameters

z - complex value

[edit] Return value

If no errors occur, the complex arc hyperbolic sine of z is returned, in the range of a strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.

[edit] Error handling and special values

Errors are reported consistent with math_errhandling.

If the implementation supports IEEE floating-point arithmetic,

  • std::asinh(std::conj(z)) == std::conj(std::asinh(z))
  • std::asinh(-z) == -std::asinh(z)
  • If z is (+0,+0), the result is (+0,+0)
  • If z is (x,+∞) (for any positive finite x), the result is (+∞,π/2)
  • If z is (x,NaN) (for any finite x), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (+∞,y) (for any positive finite y), the result is (+∞,+0)
  • If z is (+∞,+∞), the result is (+∞,π/4)
  • If z is (+∞,NaN), the result is (+∞,NaN)
  • If z is (NaN,+0), the result is (NaN,+0)
  • If z is (NaN,y) (for any finite nonzero y), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (NaN,+∞), the result is (±∞,NaN) (the sign of the real part is unspecified)
  • If z is (NaN,NaN), the result is (NaN,NaN)

[edit] Notes

Although the C++ standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".

Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-i∞,-i) and (i,i∞) of the imaginary axis.

The mathematical definition of the principal value of the inverse hyperbolic sine is asinh z = ln(z + 1+z2).

For any z, asinh(z) =
asin(iz)
i
.

[edit] Example

#include <complex>
#include <iostream>
 
int main()
{
    std::cout << std::fixed;
    std::complex<double> z1(0.0, -2.0);
    std::cout << "asinh" << z1 << " = " << std::asinh(z1) << '\n';
 
    std::complex<double> z2(-0.0, -2);
    std::cout << "asinh" << z2 << " (the other side of the cut) = "
              << std::asinh(z2) << '\n';
 
    // for any z, asinh(z) = asin(iz) / i
    std::complex<double> z3(1.0, 2.0);
    std::complex<double> i(0.0, 1.0);
    std::cout << "asinh" << z3 << " = " << std::asinh(z3) << '\n'
              << "asin" << z3 * i << " / i = " << std::asin(z3 * i) / i << '\n';
}

Output:

asinh(0.000000,-2.000000) = (1.316958,-1.570796)
asinh(-0.000000,-2.000000) (the other side of the cut) = (-1.316958,-1.570796)
asinh(1.000000,2.000000) = (1.469352,1.063440)
asin(-2.000000,1.000000) / i = (1.469352,1.063440)

[edit] See also

computes area hyperbolic cosine of a complex number (arcosh(z))
(function template) [edit]
computes area hyperbolic tangent of a complex number (artanh(z))
(function template) [edit]
computes hyperbolic sine of a complex number (sinh(z))
(function template) [edit]
(C++11)(C++11)(C++11)
computes the inverse hyperbolic sine (arsinh(x))
(function) [edit]
C documentation for casinh