Difference between revisions of "cpp/numeric/complex/cosh"
From cppreference.com
m (Update links.) |
Andreas Krug (Talk | contribs) m (fmt, headers sorted) |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{cpp/title|cosh{{small|(std::complex)}}}} | {{cpp/title|cosh{{small|(std::complex)}}}} | ||
{{cpp/numeric/complex/navbar}} | {{cpp/numeric/complex/navbar}} | ||
− | {{ddcl | header=complex | | + | {{ddcl|header=complex|since=c++11|1= |
template< class T > | template< class T > | ||
complex<T> cosh( const complex<T>& z ); | complex<T> cosh( const complex<T>& z ); | ||
}} | }} | ||
− | Computes complex hyperbolic cosine of a complex value {{ | + | Computes complex hyperbolic cosine of a complex value {{c|z}}. |
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par | z | complex value}} | + | {{par|z|complex value}} |
{{par end}} | {{par end}} | ||
===Return value=== | ===Return value=== | ||
− | + | If no errors occur, complex hyperbolic cosine of {{c|z}} is returned. | |
+ | |||
+ | ===Error handling and special values=== | ||
+ | Errors are reported consistent with {{lc|math_errhandling}}. | ||
+ | |||
+ | If the implementation supports IEEE floating-point arithmetic, | ||
+ | * {{c|std::cosh(std::conj(z)) {{==}} std::conj(std::cosh(z))}} | ||
+ | * {{c|std::cosh(z) {{==}} std::cosh(-z)}} | ||
+ | * If {{c|z}} is {{tt|(+0,+0)}}, the result is {{tt|(1,+0)}} | ||
+ | * If {{c|z}} is {{tt|(+0,+∞)}}, the result is {{tt|(NaN,±0)}} (the sign of the imaginary part is unspecified) and {{lc|FE_INVALID}} is raised | ||
+ | * If {{c|z}} is {{tt|(+0,NaN)}}, the result is {{tt|(NaN,±0)}} (the sign of the imaginary part is unspecified) | ||
+ | * If {{c|z}} is {{tt|(x,+∞)}} (for any finite non-zero x), the result is {{tt|(NaN,NaN)}} and {{lc|FE_INVALID}} is raised | ||
+ | * If {{c|z}} is {{tt|(x,NaN)}} (for any finite non-zero x), the result is {{tt|(NaN,NaN)}} and {{lc|FE_INVALID}} may be raised | ||
+ | * If {{c|z}} is {{tt|(+∞,+0)}}, the result is {{tt|(+∞,+0)}} | ||
+ | * If {{c|z}} is {{tt|(+∞,y)}} (for any finite non-zero y), the result is {{tt|+∞cis(y)}} | ||
+ | * If {{c|z}} is {{tt|(+∞,+∞)}}, the result is {{tt|(±∞,NaN)}} (the sign of the real part is unspecified) and {{lc|FE_INVALID}} is raised | ||
+ | * If {{c|z}} is {{tt|(+∞,NaN)}}, the result is {{tt|(+∞,NaN)}} | ||
+ | * If {{c|z}} is {{tt|(NaN,+0)}}, the result is {{tt|(NaN,±0)}} (the sign of the imaginary part is unspecified) | ||
+ | * If {{c|z}} is {{tt|(NaN,+y)}} (for any finite non-zero y), the result is {{tt|(NaN,NaN)}} and {{lc|FE_INVALID}} may be raised | ||
+ | * If {{c|z}} is {{tt|(NaN,NaN)}}, the result is {{tt|(NaN,NaN)}} | ||
+ | |||
+ | where {{math|cis(y)}} is {{math|cos(y) + i sin(y)}}. | ||
+ | |||
+ | ===Notes=== | ||
+ | Mathematical definition of hyperbolic cosine is {{math|cosh z {{=}} {{mfrac|e{{su|p=z}}+e{{su|p=-z}}|2}}}}. | ||
+ | |||
+ | Hyperbolic cosine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi. | ||
+ | |||
+ | ===Examples=== | ||
+ | {{example| | ||
+ | |code= | ||
+ | #include <cmath> | ||
+ | #include <complex> | ||
+ | #include <iostream> | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | std::cout << std::fixed; | ||
+ | std::complex<double> z(1.0, 0.0); // behaves like real cosh along the real line | ||
+ | std::cout << "cosh" << z << " = " << std::cosh(z) | ||
+ | << " (cosh(1) = " << std::cosh(1) << ")\n"; | ||
+ | |||
+ | std::complex<double> z2(0.0, 1.0); // behaves like real cosine along the imaginary line | ||
+ | std::cout << "cosh" << z2 << " = " << std::cosh(z2) | ||
+ | << " ( cos(1) = " << std::cos(1) << ")\n"; | ||
+ | } | ||
+ | |output= | ||
+ | cosh(1.000000,0.000000) = (1.543081,0.000000) (cosh(1) = 1.543081) | ||
+ | cosh(0.000000,1.000000) = (0.540302,0.000000) ( cos(1) = 0.540302) | ||
+ | }} | ||
===See also=== | ===See also=== | ||
{{dsc begin}} | {{dsc begin}} | ||
− | {{dsc inc | cpp/numeric/complex/dsc | + | {{dsc inc|cpp/numeric/complex/dsc sinh}} |
− | {{dsc inc | cpp/numeric/complex/dsc | + | {{dsc inc|cpp/numeric/complex/dsc tanh}} |
+ | {{dsc inc|cpp/numeric/complex/dsc acosh}} | ||
+ | {{dsc inc|cpp/numeric/math/dsc cosh}} | ||
+ | {{dsc inc|cpp/numeric/valarray/dsc cosh}} | ||
+ | {{dsc see c|c/numeric/complex/ccosh}} | ||
{{dsc end}} | {{dsc end}} | ||
− | + | {{langlinks|de|es|fr|it|ja|pt|ru|zh}} | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Latest revision as of 23:13, 21 April 2023
Defined in header <complex>
|
||
template< class T > complex<T> cosh( const complex<T>& z ); |
(since C++11) | |
Computes complex hyperbolic cosine of a complex value z.
Contents |
[edit] Parameters
z | - | complex value |
[edit] Return value
If no errors occur, complex hyperbolic cosine of z is returned.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- std::cosh(std::conj(z)) == std::conj(std::cosh(z))
- std::cosh(z) == std::cosh(-z)
- If z is
(+0,+0)
, the result is(1,+0)
- If z is
(+0,+∞)
, the result is(NaN,±0)
(the sign of the imaginary part is unspecified) and FE_INVALID is raised - If z is
(+0,NaN)
, the result is(NaN,±0)
(the sign of the imaginary part is unspecified) - If z is
(x,+∞)
(for any finite non-zero x), the result is(NaN,NaN)
and FE_INVALID is raised - If z is
(x,NaN)
(for any finite non-zero x), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(+∞,+0)
, the result is(+∞,+0)
- If z is
(+∞,y)
(for any finite non-zero y), the result is+∞cis(y)
- If z is
(+∞,+∞)
, the result is(±∞,NaN)
(the sign of the real part is unspecified) and FE_INVALID is raised - If z is
(+∞,NaN)
, the result is(+∞,NaN)
- If z is
(NaN,+0)
, the result is(NaN,±0)
(the sign of the imaginary part is unspecified) - If z is
(NaN,+y)
(for any finite non-zero y), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(NaN,NaN)
, the result is(NaN,NaN)
where cis(y) is cos(y) + i sin(y).
[edit] Notes
Mathematical definition of hyperbolic cosine is cosh z =ez+e-z |
2 |
Hyperbolic cosine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi.
[edit] Examples
Run this code
#include <cmath> #include <complex> #include <iostream> int main() { std::cout << std::fixed; std::complex<double> z(1.0, 0.0); // behaves like real cosh along the real line std::cout << "cosh" << z << " = " << std::cosh(z) << " (cosh(1) = " << std::cosh(1) << ")\n"; std::complex<double> z2(0.0, 1.0); // behaves like real cosine along the imaginary line std::cout << "cosh" << z2 << " = " << std::cosh(z2) << " ( cos(1) = " << std::cos(1) << ")\n"; }
Output:
cosh(1.000000,0.000000) = (1.543081,0.000000) (cosh(1) = 1.543081) cosh(0.000000,1.000000) = (0.540302,0.000000) ( cos(1) = 0.540302)
[edit] See also
computes hyperbolic sine of a complex number (sinh(z)) (function template) | |
computes hyperbolic tangent of a complex number (tanh(z)) (function template) | |
(C++11) |
computes area hyperbolic cosine of a complex number (arcosh(z)) (function template) |
(C++11)(C++11) |
computes hyperbolic cosine (cosh(x)) (function) |
applies the function std::cosh to each element of valarray (function template) | |
C documentation for ccosh
|