Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/complex/cosh"

From cppreference.com
< cpp‎ | numeric‎ | complex
m (Update links.)
m (fmt, headers sorted)
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{cpp/title|cosh{{small|(std::complex)}}}}
 
{{cpp/title|cosh{{small|(std::complex)}}}}
 
{{cpp/numeric/complex/navbar}}
 
{{cpp/numeric/complex/navbar}}
{{ddcl | header=complex | notes={{mark since c++11}} | 1=
+
{{ddcl|header=complex|since=c++11|1=
 
template< class T >  
 
template< class T >  
 
complex<T> cosh( const complex<T>& z );
 
complex<T> cosh( const complex<T>& z );
 
}}
 
}}
  
Computes complex hyperbolic cosine of a complex value {{tt|z}}.  
+
Computes complex hyperbolic cosine of a complex value {{c|z}}.  
  
 
===Parameters===
 
===Parameters===
 
{{par begin}}
 
{{par begin}}
{{par | z | complex value}}
+
{{par|z|complex value}}
 
{{par end}}
 
{{par end}}
  
 
===Return value===
 
===Return value===
  
Complex hyperbolic cosine of {{tt|z}}
+
If no errors occur, complex hyperbolic cosine of {{c|z}} is returned.
 +
 
 +
===Error handling and special values===
 +
Errors are reported consistent with {{lc|math_errhandling}}.
 +
 
 +
If the implementation supports IEEE floating-point arithmetic,
 +
* {{c|std::cosh(std::conj(z)) {{==}} std::conj(std::cosh(z))}}
 +
* {{c|std::cosh(z) {{==}} std::cosh(-z)}}
 +
* If {{c|z}} is {{tt|(+0,+0)}}, the result is {{tt|(1,+0)}}
 +
* If {{c|z}} is {{tt|(+0,+∞)}}, the result is {{tt|(NaN,±0)}} (the sign of the imaginary part is unspecified) and {{lc|FE_INVALID}} is raised
 +
* If {{c|z}} is {{tt|(+0,NaN)}}, the result is {{tt|(NaN,±0)}} (the sign of the imaginary part is unspecified)
 +
* If {{c|z}} is {{tt|(x,+∞)}} (for any finite non-zero x), the result is {{tt|(NaN,NaN)}} and {{lc|FE_INVALID}} is raised
 +
* If {{c|z}} is {{tt|(x,NaN)}} (for any finite non-zero x), the result is {{tt|(NaN,NaN)}} and {{lc|FE_INVALID}} may be raised
 +
* If {{c|z}} is {{tt|(+∞,+0)}}, the result is {{tt|(+∞,+0)}}
 +
* If {{c|z}} is {{tt|(+∞,y)}} (for any finite non-zero y), the result is {{tt|+∞cis(y)}}
 +
* If {{c|z}} is {{tt|(+∞,+∞)}}, the result is {{tt|(±∞,NaN)}} (the sign of the real part is unspecified) and {{lc|FE_INVALID}} is raised
 +
* If {{c|z}} is {{tt|(+∞,NaN)}}, the result is {{tt|(+∞,NaN)}}
 +
* If {{c|z}} is {{tt|(NaN,+0)}}, the result is {{tt|(NaN,±0)}} (the sign of the imaginary part is unspecified)
 +
* If {{c|z}} is {{tt|(NaN,+y)}} (for any finite non-zero y), the result is {{tt|(NaN,NaN)}} and {{lc|FE_INVALID}} may be raised
 +
* If {{c|z}} is {{tt|(NaN,NaN)}}, the result is {{tt|(NaN,NaN)}}
 +
 
 +
where {{math|cis(y)}} is {{math|cos(y) + i sin(y)}}.
 +
 
 +
===Notes===
 +
Mathematical definition of hyperbolic cosine is {{math|cosh z {{=}} {{mfrac|e{{su|p=z}}+e{{su|p=-z}}|2}}}}.
 +
 
 +
Hyperbolic cosine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2&pi;i.
 +
 
 +
===Examples===
 +
{{example|
 +
|code=
 +
#include <cmath>
 +
#include <complex>
 +
#include <iostream>
 +
 
 +
int main()
 +
 +
    std::cout << std::fixed;
 +
    std::complex<double> z(1.0, 0.0); // behaves like real cosh along the real line
 +
    std::cout << "cosh" << z << " = " << std::cosh(z)
 +
              << " (cosh(1) = " << std::cosh(1) << ")\n";
 +
 
 +
    std::complex<double> z2(0.0, 1.0); // behaves like real cosine along the imaginary line
 +
    std::cout << "cosh" << z2 << " = " << std::cosh(z2)
 +
              << " ( cos(1) = " << std::cos(1) << ")\n";
 +
 +
|output=
 +
cosh(1.000000,0.000000) = (1.543081,0.000000) (cosh(1) = 1.543081)
 +
cosh(0.000000,1.000000) = (0.540302,0.000000) ( cos(1) = 0.540302)
 +
}}
  
 
===See also===
 
===See also===
 
{{dsc begin}}
 
{{dsc begin}}
{{dsc inc | cpp/numeric/complex/dsc cos}}
+
{{dsc inc|cpp/numeric/complex/dsc sinh}}
{{dsc inc | cpp/numeric/complex/dsc acos}}
+
{{dsc inc|cpp/numeric/complex/dsc tanh}}
 +
{{dsc inc|cpp/numeric/complex/dsc acosh}}
 +
{{dsc inc|cpp/numeric/math/dsc cosh}}
 +
{{dsc inc|cpp/numeric/valarray/dsc cosh}}
 +
{{dsc see c|c/numeric/complex/ccosh}}
 
{{dsc end}}
 
{{dsc end}}
  
[[de:cpp/numeric/complex/cosh]]
+
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}
[[es:cpp/numeric/complex/cosh]]
+
[[fr:cpp/numeric/complex/cosh]]
+
[[it:cpp/numeric/complex/cosh]]
+
[[ja:cpp/numeric/complex/cosh]]
+
[[pt:cpp/numeric/complex/cosh]]
+
[[ru:cpp/numeric/complex/cosh]]
+
[[zh:cpp/numeric/complex/cosh]]
+

Latest revision as of 23:13, 21 April 2023

 
 
 
 
Defined in header <complex>
template< class T >
complex<T> cosh( const complex<T>& z );
(since C++11)

Computes complex hyperbolic cosine of a complex value z.

Contents

[edit] Parameters

z - complex value

[edit] Return value

If no errors occur, complex hyperbolic cosine of z is returned.

[edit] Error handling and special values

Errors are reported consistent with math_errhandling.

If the implementation supports IEEE floating-point arithmetic,

  • std::cosh(std::conj(z)) == std::conj(std::cosh(z))
  • std::cosh(z) == std::cosh(-z)
  • If z is (+0,+0), the result is (1,+0)
  • If z is (+0,+∞), the result is (NaN,±0) (the sign of the imaginary part is unspecified) and FE_INVALID is raised
  • If z is (+0,NaN), the result is (NaN,±0) (the sign of the imaginary part is unspecified)
  • If z is (x,+∞) (for any finite non-zero x), the result is (NaN,NaN) and FE_INVALID is raised
  • If z is (x,NaN) (for any finite non-zero x), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (+∞,+0), the result is (+∞,+0)
  • If z is (+∞,y) (for any finite non-zero y), the result is +∞cis(y)
  • If z is (+∞,+∞), the result is (±∞,NaN) (the sign of the real part is unspecified) and FE_INVALID is raised
  • If z is (+∞,NaN), the result is (+∞,NaN)
  • If z is (NaN,+0), the result is (NaN,±0) (the sign of the imaginary part is unspecified)
  • If z is (NaN,+y) (for any finite non-zero y), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (NaN,NaN), the result is (NaN,NaN)

where cis(y) is cos(y) + i sin(y).

[edit] Notes

Mathematical definition of hyperbolic cosine is cosh z =
ez+e-z
2
.

Hyperbolic cosine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi.

[edit] Examples

#include <cmath>
#include <complex>
#include <iostream>
 
int main()
{   
    std::cout << std::fixed;
    std::complex<double> z(1.0, 0.0); // behaves like real cosh along the real line
    std::cout << "cosh" << z << " = " << std::cosh(z)
              << " (cosh(1) = " << std::cosh(1) << ")\n";
 
    std::complex<double> z2(0.0, 1.0); // behaves like real cosine along the imaginary line
    std::cout << "cosh" << z2 << " = " << std::cosh(z2)
              << " ( cos(1) = " << std::cos(1) << ")\n";
}

Output:

cosh(1.000000,0.000000) = (1.543081,0.000000) (cosh(1) = 1.543081)
cosh(0.000000,1.000000) = (0.540302,0.000000) ( cos(1) = 0.540302)

[edit] See also

computes hyperbolic sine of a complex number (sinh(z))
(function template) [edit]
computes hyperbolic tangent of a complex number (tanh(z))
(function template) [edit]
computes area hyperbolic cosine of a complex number (arcosh(z))
(function template) [edit]
(C++11)(C++11)
computes hyperbolic cosine (cosh(x))
(function) [edit]
applies the function std::cosh to each element of valarray
(function template) [edit]
C documentation for ccosh