Difference between revisions of "cpp/numeric/math/lgamma"
(+) |
(Use declarations template) |
||
(22 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
− | {{cpp/title|lgamma}} | + | {{cpp/title|lgamma|lgammaf|lgammal}} |
− | {{cpp/numeric/math/ | + | {{cpp/numeric/math/navbar}} |
− | {{ | + | {{cpp/numeric/math/declarations |
− | {{ | + | |family=lgamma |
− | {{ | + | |param1=num |
− | + | |constexpr_since=26 | |
+ | |desc=Computes the natural logarithm of the absolute value of the {{enwiki|gamma function}} of {{c|num}}. | ||
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Parameters=== | ===Parameters=== | ||
− | {{ | + | {{par begin}} |
− | {{ | + | {{par|num|floating-point or integer value}} |
− | {{ | + | {{par end}} |
===Return value=== | ===Return value=== | ||
+ | If no errors occur, the value of the logarithm of the gamma function of {{c|num}}, that is {{mathjax-or|1=\(\log_{e}{{!}}{\int_0^\infty t^{num-1} e^{-t} \mathsf{d}t}{{!}}\)|2=log{{su|b=e}}{{!}}{{minteg|0|∞|''t''{{su|p=num-1}} {{mexp|-t}} d''t''}}{{!}}}}, is returned. | ||
− | + | If a pole error occurs, {{lc|HUGE_VAL|+HUGE_VAL}}, {{tt|+HUGE_VALF}}, or {{tt|+HUGE_VALL}} is returned. | |
− | If {{ | + | If a range error due to overflow occurs, {{lc|HUGE_VAL|±HUGE_VAL}}, {{tt|±HUGE_VALF}}, or {{tt|±HUGE_VALL}} is returned. |
− | === | + | ===Error handling=== |
− | + | Errors are reported as specified in {{lc|math_errhandling}}. | |
− | If {{ | + | If {{c|num}} is zero or is an integer less than zero, a pole error may occur. |
+ | |||
+ | If the implementation supports IEEE floating-point arithmetic (IEC 60559), | ||
+ | * If the argument is 1, +0 is returned. | ||
+ | * If the argument is 2, +0 is returned. | ||
+ | * If the argument is ±0, +∞ is returned and {{lc|FE_DIVBYZERO}} is raised. | ||
+ | * If the argument is a negative integer, +∞ is returned and {{lc|FE_DIVBYZERO}} is raised. | ||
+ | * If the argument is ±∞, +∞ is returned. | ||
+ | * If the argument is NaN, NaN is returned. | ||
===Notes=== | ===Notes=== | ||
+ | If {{c|num}} is a natural number, {{c|std::lgamma(num)}} is the logarithm of the factorial of {{c|num - 1}}. | ||
− | [ | + | The [https://pubs.opengroup.org/onlinepubs/9699919799/functions/lgamma.html POSIX version of {{tt|lgamma}}] is not thread-safe: each execution of the function stores the sign of the gamma function of {{c|num}} in the static external variable {{tt|signgam}}. Some implementations provide {{tt|lgamma_r}}, which takes a pointer to user-provided storage for {{tt|singgam}} as the second parameter, and is thread-safe. |
− | + | There is a non-standard function named {{tt|gamma}} in various implementations, but its definition is inconsistent. For example, glibc and 4.2BSD version of {{tt|gamma}} executes {{tt|lgamma}}, but 4.4BSD version of {{tt|gamma}} executes {{tt|tgamma}}. | |
− | {{ | + | {{cpp/numeric/math/additional integer overload note|lgamma}} |
− | {{ | + | |
− | {{ | + | ===Example=== |
+ | {{example | ||
+ | |code= | ||
+ | #include <cerrno> | ||
+ | #include <cfenv> | ||
+ | #include <cmath> | ||
+ | #include <cstring> | ||
+ | #include <iostream> | ||
+ | |||
+ | // #pragma STDC FENV_ACCESS ON | ||
+ | |||
+ | const double pi = std::acos(-1); // or std::numbers::pi since C++20 | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | std::cout << "lgamma(10) = " << std::lgamma(10) | ||
+ | << ", log(9!) = " << std::log(std::tgamma(10)) | ||
+ | << ", exp(lgamma(10)) = " << std::exp(std::lgamma(10)) << '\n' | ||
+ | << "lgamma(0.5) = " << std::lgamma(0.5) | ||
+ | << ", log(sqrt(pi)) = " << std::log(std::sqrt(pi)) << '\n'; | ||
+ | |||
+ | // special values | ||
+ | std::cout << "lgamma(1) = " << std::lgamma(1) << '\n' | ||
+ | << "lgamma(+Inf) = " << std::lgamma(INFINITY) << '\n'; | ||
+ | |||
+ | // error handling | ||
+ | errno = 0; | ||
+ | std::feclearexcept(FE_ALL_EXCEPT); | ||
+ | |||
+ | std::cout << "lgamma(0) = " << std::lgamma(0) << '\n'; | ||
+ | |||
+ | if (errno == ERANGE) | ||
+ | std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; | ||
+ | if (std::fetestexcept(FE_DIVBYZERO)) | ||
+ | std::cout << " FE_DIVBYZERO raised\n"; | ||
+ | } | ||
+ | |output= | ||
+ | lgamma(10) = 12.8018, log(9!) = 12.8018, exp(lgamma(10)) = 362880 | ||
+ | lgamma(0.5) = 0.572365, log(sqrt(pi)) = 0.572365 | ||
+ | lgamma(1) = 0 | ||
+ | lgamma(+Inf) = inf | ||
+ | lgamma(0) = inf | ||
+ | errno == ERANGE: Numerical result out of range | ||
+ | FE_DIVBYZERO raised | ||
+ | }} | ||
+ | |||
+ | ===See also=== | ||
+ | {{dsc begin}} | ||
+ | {{dsc inc|cpp/numeric/math/dsc tgamma}} | ||
+ | {{dsc see c|c/numeric/math/lgamma}} | ||
+ | {{dsc end}} | ||
===External links=== | ===External links=== | ||
− | [ | + | {{eli|[https://mathworld.wolfram.com/LogGammaFunction.html Weisstein, Eric W. "Log Gamma Function."] From MathWorld — A Wolfram Web Resource.}} |
+ | |||
+ | {{langlinks|de|es|fr|it|ja|pt|ru|zh}} |
Latest revision as of 09:10, 28 June 2023
Defined in header <cmath>
|
||
(1) | ||
float lgamma ( float num ); double lgamma ( double num ); |
(until C++23) | |
/* floating-point-type */ lgamma ( /* floating-point-type */ num ); |
(since C++23) (constexpr since C++26) |
|
float lgammaf( float num ); |
(2) | (since C++11) (constexpr since C++26) |
long double lgammal( long double num ); |
(3) | (since C++11) (constexpr since C++26) |
Additional overloads (since C++11) |
||
Defined in header <cmath>
|
||
template< class Integer > double lgamma ( Integer num ); |
(A) | (constexpr since C++26) |
std::lgamma
for all cv-unqualified floating-point types as the type of the parameter.(since C++23)
A) Additional overloads are provided for all integer types, which are treated as double.
|
(since C++11) |
Contents |
[edit] Parameters
num | - | floating-point or integer value |
[edit] Return value
If no errors occur, the value of the logarithm of the gamma function of num, that is loge|∫∞0tnum-1 e-t dt|, is returned.
If a pole error occurs, +HUGE_VAL, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF
, or ±HUGE_VALL
is returned.
[edit] Error handling
Errors are reported as specified in math_errhandling.
If num is zero or is an integer less than zero, a pole error may occur.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is 1, +0 is returned.
- If the argument is 2, +0 is returned.
- If the argument is ±0, +∞ is returned and FE_DIVBYZERO is raised.
- If the argument is a negative integer, +∞ is returned and FE_DIVBYZERO is raised.
- If the argument is ±∞, +∞ is returned.
- If the argument is NaN, NaN is returned.
[edit] Notes
If num is a natural number, std::lgamma(num) is the logarithm of the factorial of num - 1.
The POSIX version of lgamma
is not thread-safe: each execution of the function stores the sign of the gamma function of num in the static external variable signgam
. Some implementations provide lgamma_r
, which takes a pointer to user-provided storage for singgam
as the second parameter, and is thread-safe.
There is a non-standard function named gamma
in various implementations, but its definition is inconsistent. For example, glibc and 4.2BSD version of gamma
executes lgamma
, but 4.4BSD version of gamma
executes tgamma
.
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::lgamma(num) has the same effect as std::lgamma(static_cast<double>(num)).
[edit] Example
#include <cerrno> #include <cfenv> #include <cmath> #include <cstring> #include <iostream> // #pragma STDC FENV_ACCESS ON const double pi = std::acos(-1); // or std::numbers::pi since C++20 int main() { std::cout << "lgamma(10) = " << std::lgamma(10) << ", log(9!) = " << std::log(std::tgamma(10)) << ", exp(lgamma(10)) = " << std::exp(std::lgamma(10)) << '\n' << "lgamma(0.5) = " << std::lgamma(0.5) << ", log(sqrt(pi)) = " << std::log(std::sqrt(pi)) << '\n'; // special values std::cout << "lgamma(1) = " << std::lgamma(1) << '\n' << "lgamma(+Inf) = " << std::lgamma(INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "lgamma(0) = " << std::lgamma(0) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_DIVBYZERO)) std::cout << " FE_DIVBYZERO raised\n"; }
Output:
lgamma(10) = 12.8018, log(9!) = 12.8018, exp(lgamma(10)) = 362880 lgamma(0.5) = 0.572365, log(sqrt(pi)) = 0.572365 lgamma(1) = 0 lgamma(+Inf) = inf lgamma(0) = inf errno == ERANGE: Numerical result out of range FE_DIVBYZERO raised
[edit] See also
(C++11)(C++11)(C++11) |
gamma function (function) |
C documentation for lgamma
|
[edit] External links
Weisstein, Eric W. "Log Gamma Function." From MathWorld — A Wolfram Web Resource. |