Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/algorithm/ranges/minmax"

From cppreference.com
< cpp‎ | algorithm‎ | ranges
m (fmt, headers sorted)
m (fmt, @-@ -> @,@)
 
Line 46: Line 46:
 
{{par|r|a non-empty range of values to compare}}
 
{{par|r|a non-empty range of values to compare}}
 
{{par|comp|comparison to apply to the projected elements}}
 
{{par|comp|comparison to apply to the projected elements}}
{{par|proj|projection to apply to the elements.}}
+
{{par|proj|projection to apply to the elements}}
 
{{par end}}
 
{{par end}}
  
Line 52: Line 52:
 
@1@ {{c|{b, a} }} if, according to their respective projected value, {{c|b}} is smaller than {{c|a}}; otherwise it returns {{c|{a, b} }}.
 
@1@ {{c|{b, a} }} if, according to their respective projected value, {{c|b}} is smaller than {{c|a}}; otherwise it returns {{c|{a, b} }}.
  
@2-3@ {{c|{s, l} }}, where {{tt|s}} and {{tt|l}} are respectively the smallest and largest values in {{c|r}}, according to their projected value. If several values are equivalent to the smallest and largest, returns the leftmost smallest value, and the rightmost largest value. If the range is empty (as determined by {{c|ranges::distance(r)}}), the behavior is undefined.
+
@2,3@ {{c|{s, l} }}, where {{tt|s}} and {{tt|l}} are respectively the smallest and largest values in {{c|r}}, according to their projected value. If several values are equivalent to the smallest and largest, returns the leftmost smallest value, and the rightmost largest value. If the range is empty (as determined by {{c|ranges::distance(r)}}), the behavior is undefined.
  
 
===Complexity===
 
===Complexity===
 
@1@ Exactly one comparison and two applications of the projection.
 
@1@ Exactly one comparison and two applications of the projection.
  
@2-3@ At most {{c|3 / 2 * ranges::distance(r)}} comparisons and twice as many applications of the projection.
+
@2,3@ At most {{c|3 / 2 * ranges::distance(r)}} comparisons and twice as many applications of the projection.
  
 
===Possible implementation===
 
===Possible implementation===
Line 127: Line 127:
 
     namespace ranges = std::ranges;
 
     namespace ranges = std::ranges;
  
     constexpr std::array v {3, 1, 4, 1, 5, 9, 2, 6, 5};
+
     constexpr std::array v{3, 1, 4, 1, 5, 9, 2, 6, 5};
  
 
     std::random_device rd;
 
     std::random_device rd;
Line 148: Line 148:
 
     std::cout << "smallest: " << min << ", " << "largest: " << max << '\n';
 
     std::cout << "smallest: " << min << ", " << "largest: " << max << '\n';
 
}
 
}
|p=true|output=
+
|p=true
 +
|output=
 
v[3:9]: 1 5 9 2 6 5  
 
v[3:9]: 1 5 9 2 6 5  
 
smallest: 1, largest: 9
 
smallest: 1, largest: 9

Latest revision as of 10:34, 28 August 2023

 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
minmax
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< class T, class Proj = std::identity,

          std::indirect_strict_weak_order<
              std::projected<const T*, Proj>> Comp = ranges::less >
constexpr ranges::minmax_result<const T&>

    minmax( const T& a, const T& b, Comp comp = {}, Proj proj = {} );
(1) (since C++20)
template< std::copyable T, class Proj = std::identity,

          std::indirect_strict_weak_order<
              std::projected<const T*, Proj>> Comp = ranges::less >
constexpr ranges::minmax_result<T>

    minmax( std::initializer_list<T> r, Comp comp = {}, Proj proj = {} );
(2) (since C++20)
template< ranges::input_range R, class Proj = std::identity,

          std::indirect_strict_weak_order<
              std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less >
requires std::indirectly_copyable_storable<ranges::iterator_t<R>, ranges::range_value_t<R>*>
constexpr ranges::minmax_result<ranges::range_value_t<R>>

    minmax( R&& r, Comp comp = {}, Proj proj = {} );
(3) (since C++20)
Helper types
template< class T >
using minmax_result = ranges::min_max_result<T>;
(4) (since C++20)

Returns the smallest and the greatest of the given projected values.

1) Returns references to the smaller and the greater of a and b.
2) Returns the smallest and the greatest of the values in the initializer list r.
3) Returns the smallest and the greatest of the values in the range r.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Contents

[edit] Parameters

a, b - the values to compare
r - a non-empty range of values to compare
comp - comparison to apply to the projected elements
proj - projection to apply to the elements

[edit] Return value

1) {b, a} if, according to their respective projected value, b is smaller than a; otherwise it returns {a, b}.
2,3) {s, l}, where s and l are respectively the smallest and largest values in r, according to their projected value. If several values are equivalent to the smallest and largest, returns the leftmost smallest value, and the rightmost largest value. If the range is empty (as determined by ranges::distance(r)), the behavior is undefined.

[edit] Complexity

1) Exactly one comparison and two applications of the projection.
2,3) At most 3 / 2 * ranges::distance(r) comparisons and twice as many applications of the projection.

[edit] Possible implementation

struct minmax_fn
{
    template<class T, class Proj = std::identity,
             std::indirect_strict_weak_order<
                 std::projected<const T*, Proj>> Comp = ranges::less>
    constexpr ranges::minmax_result<const T&>
         operator()(const T& a, const T& b, Comp comp = {}, Proj proj = {}) const
    {
        if (std::invoke(comp, std::invoke(proj, b), std::invoke(proj, a)))
            return {b, a};
 
        return {a, b};
    }
 
    template<std::copyable T, class Proj = std::identity,
             std::indirect_strict_weak_order<
                 std::projected<const T*, Proj>> Comp = ranges::less>
    constexpr ranges::minmax_result<T>
        operator()(std::initializer_list<T> r, Comp comp = {}, Proj proj = {}) const
    {
        auto result = ranges::minmax_element(r, std::ref(comp), std::ref(proj));
        return {*result.min, *result.max};
    }
 
    template<ranges::input_range R, class Proj = std::identity,
             std::indirect_strict_weak_order<
                 std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>
    requires std::indirectly_copyable_storable<ranges::iterator_t<R>,
                                               ranges::range_value_t<R>*>
    constexpr ranges::minmax_result<ranges::range_value_t<R>>
        operator()(R&& r, Comp comp = {}, Proj proj = {}) const
    {
        auto result = ranges::minmax_element(r, std::ref(comp), std::ref(proj));
        return {std::move(*result.min), std::move(*result.max)};
    }
};
 
inline constexpr minmax_fn minmax;

[edit] Notes

For overload (1), if one of the parameters is a temporary, the reference returned becomes a dangling reference at the end of the full expression that contains the call to minmax:

int n = 1;
auto p = std::ranges::minmax(n, n + 1);
int m = p.min; // ok
int x = p.max; // undefined behavior
 
// Note that structured bindings have the same issue
auto [mm, xx] = std::ranges::minmax(n, n + 1);
xx; // undefined behavior

[edit] Example

#include <algorithm>
#include <array>
#include <iostream>
#include <random>
 
int main()
{
    namespace ranges = std::ranges;
 
    constexpr std::array v{3, 1, 4, 1, 5, 9, 2, 6, 5};
 
    std::random_device rd;
    std::mt19937_64 generator(rd());
    std::uniform_int_distribution<> distribution(0, ranges::distance(v)); // [0..9]
 
    // auto bounds = ranges::minmax(distribution(generator), distribution(generator));
    // UB: dangling references: bounds.min and bounds.max have the type `const int&`.
 
    const int x1 = distribution(generator);
    const int x2 = distribution(generator);
    auto bounds = ranges::minmax(x1, x2); // OK: got references to lvalues x1 and x2
 
    std::cout << "v[" << bounds.min << ":" << bounds.max << "]: ";
    for (int i = bounds.min; i < bounds.max; ++i)
        std::cout << v[i] << ' ';
    std::cout << '\n';
 
    auto [min, max] = ranges::minmax(v);
    std::cout << "smallest: " << min << ", " << "largest: " << max << '\n';
}

Possible output:

v[3:9]: 1 5 9 2 6 5 
smallest: 1, largest: 9

[edit] See also

returns the smaller of the given values
(niebloid)[edit]
returns the greater of the given values
(niebloid)[edit]
returns the smallest and the largest elements in a range
(niebloid)[edit]
clamps a value between a pair of boundary values
(niebloid)[edit]
(C++11)
returns the smaller and larger of two elements
(function template) [edit]