Difference between revisions of "cpp/numeric/math/erf"
From cppreference.com
m (mathjax-or) |
Andreas Krug (Talk | contribs) m (., fmt, "" -> '') |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{cpp/title|erf|erff|erfl}} | {{cpp/title|erf|erff|erfl}} | ||
{{cpp/numeric/math/navbar}} | {{cpp/numeric/math/navbar}} | ||
− | {{ | + | {{cpp/numeric/math/declarations |
− | {{ | + | |family=erf |
− | {{ | + | |param1=num |
− | + | |constexpr_since=26 | |
− | + | |desc=Computes the {{enwiki|Error function|error function}} of {{c|num}}. | |
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par | | + | {{par|num|floating-point or integer value}} |
{{par end}} | {{par end}} | ||
===Return value=== | ===Return value=== | ||
− | If no errors occur, value of the error function of {{ | + | If no errors occur, value of the error function of {{c|num}}, that is {{mathjax-or|\(\frac{2}{\sqrt{\pi} }\int_{0}^{num}{e^{-{t^2} }\mathsf{d}t}\)|{{mfrac|2|{{mrad|π}}}}{{minteg|0|num|{{mexp|-t{{su|p=2}}}}d''t''}}}}, is returned.<br><!-- a blank line does not work here --> |
− | + | If a range error occurs due to underflow, the correct result (after rounding), that is {{mathjax-or|\(\frac{2\cdot num}{\sqrt{\pi} }\)|{{mfrac|2*num|{{mrad|π}}}}}} is returned. | |
− | + | ||
− | If a range error occurs due to underflow, the correct result (after rounding), that is {{mathjax-or|\(\frac{2\cdot | + | |
===Error handling=== | ===Error handling=== | ||
Line 37: | Line 21: | ||
If the implementation supports IEEE floating-point arithmetic (IEC 60559), | If the implementation supports IEEE floating-point arithmetic (IEC 60559), | ||
− | * If the argument is ±0, ±0 is returned | + | * If the argument is ±0, ±0 is returned. |
− | * If the argument is ±∞, ±1 is returned | + | * If the argument is ±∞, ±1 is returned. |
− | * If the argument is NaN, NaN is returned | + | * If the argument is NaN, NaN is returned. |
===Notes=== | ===Notes=== | ||
− | Underflow is guaranteed if {{c|{{!}} | + | Underflow is guaranteed if {{c|{{!}}num{{!}} < DBL_MIN * (std::sqrt(π) / 2)}}. |
− | {{mathjax-or|\( | + | {{mathjax-or|\(\operatorname{erf}(\frac{x}{\sigma \sqrt{2} })\)|erf({{mfrac|x|σ{{mrad|2}}}})}} is the probability that a measurement whose errors are subject to a normal distribution with standard deviation {{mathjax-or|\(\sigma\)|σ}} is less than {{mathjax-or|\(x\)|x}} away from the mean value. |
+ | |||
+ | {{cpp/numeric/math/additional integer overload note|erf}} | ||
===Example=== | ===Example=== | ||
{{example | {{example | ||
− | + | |The following example calculates the probability that a normal variate is on the interval (x1, x2): | |
− | + | |code= | |
− | + | ||
#include <cmath> | #include <cmath> | ||
#include <iomanip> | #include <iomanip> | ||
+ | #include <iostream> | ||
+ | |||
double phi(double x1, double x2) | double phi(double x1, double x2) | ||
{ | { | ||
− | return (std::erf(x2/std::sqrt(2)) - std::erf(x1/std::sqrt(2)))/2; | + | return (std::erf(x2 / std::sqrt(2)) - std::erf(x1 / std::sqrt(2))) / 2; |
} | } | ||
+ | |||
int main() | int main() | ||
{ | { | ||
− | std::cout << " | + | std::cout << "Normal variate probabilities:\n" |
<< std::fixed << std::setprecision(2); | << std::fixed << std::setprecision(2); | ||
− | for(int n=-4; n<4; ++n) | + | for (int n = -4; n < 4; ++n) |
− | std::cout << | + | std::cout << '[' << std::setw(2) << n |
− | << std::setw(5) << 100*phi(n, n+1) << "%\n"; | + | << ':' << std::setw(2) << n + 1 << "]: " |
− | + | << std::setw(5) << 100 * phi(n, n + 1) << "%\n"; | |
− | std::cout << " | + | |
+ | std::cout << "Special values:\n" | ||
<< "erf(-0) = " << std::erf(-0.0) << '\n' | << "erf(-0) = " << std::erf(-0.0) << '\n' | ||
<< "erf(Inf) = " << std::erf(INFINITY) << '\n'; | << "erf(Inf) = " << std::erf(INFINITY) << '\n'; | ||
} | } | ||
− | + | |output= | |
− | + | Normal variate probabilities: | |
[-4:-3]: 0.13% | [-4:-3]: 0.13% | ||
[-3:-2]: 2.14% | [-3:-2]: 2.14% | ||
Line 79: | Line 68: | ||
[ 2: 3]: 2.14% | [ 2: 3]: 2.14% | ||
[ 3: 4]: 0.13% | [ 3: 4]: 0.13% | ||
− | + | Special values: | |
erf(-0) = -0.00 | erf(-0) = -0.00 | ||
erf(Inf) = 1.00 | erf(Inf) = 1.00 | ||
Line 86: | Line 75: | ||
===See also=== | ===See also=== | ||
{{dsc begin}} | {{dsc begin}} | ||
− | {{dsc inc | cpp/numeric/math/dsc erfc}} | + | {{dsc inc|cpp/numeric/math/dsc erfc}} |
− | {{dsc see c | c/numeric/math/erf}} | + | {{dsc see c|c/numeric/math/erf}} |
{{dsc end}} | {{dsc end}} | ||
===External links=== | ===External links=== | ||
− | [ | + | {{eli|[https://mathworld.wolfram.com/Erf.html Weisstein, Eric W. "Erf."] From MathWorld — A Wolfram Web Resource.}} |
{{langlinks|de|es|fr|it|ja|pt|ru|zh}} | {{langlinks|de|es|fr|it|ja|pt|ru|zh}} |
Latest revision as of 08:49, 15 October 2023
Defined in header <cmath>
|
||
(1) | ||
float erf ( float num ); double erf ( double num ); |
(until C++23) | |
/* floating-point-type */ erf ( /* floating-point-type */ num ); |
(since C++23) (constexpr since C++26) |
|
float erff( float num ); |
(2) | (since C++11) (constexpr since C++26) |
long double erfl( long double num ); |
(3) | (since C++11) (constexpr since C++26) |
Additional overloads (since C++11) |
||
Defined in header <cmath>
|
||
template< class Integer > double erf ( Integer num ); |
(A) | (constexpr since C++26) |
1-3) Computes the error function of num. The library provides overloads of
std::erf
for all cv-unqualified floating-point types as the type of the parameter.(since C++23)
A) Additional overloads are provided for all integer types, which are treated as double.
|
(since C++11) |
Contents |
[edit] Parameters
num | - | floating-point or integer value |
[edit] Return value
If no errors occur, value of the error function of num, that is2 |
√π |
If a range error occurs due to underflow, the correct result (after rounding), that is
2*num |
√π |
[edit] Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is ±0, ±0 is returned.
- If the argument is ±∞, ±1 is returned.
- If the argument is NaN, NaN is returned.
[edit] Notes
Underflow is guaranteed if |num| < DBL_MIN * (std::sqrt(π) / 2).
erf(x |
σ√2 |
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::erf(num) has the same effect as std::erf(static_cast<double>(num)).
[edit] Example
The following example calculates the probability that a normal variate is on the interval (x1, x2):
Run this code
#include <cmath> #include <iomanip> #include <iostream> double phi(double x1, double x2) { return (std::erf(x2 / std::sqrt(2)) - std::erf(x1 / std::sqrt(2))) / 2; } int main() { std::cout << "Normal variate probabilities:\n" << std::fixed << std::setprecision(2); for (int n = -4; n < 4; ++n) std::cout << '[' << std::setw(2) << n << ':' << std::setw(2) << n + 1 << "]: " << std::setw(5) << 100 * phi(n, n + 1) << "%\n"; std::cout << "Special values:\n" << "erf(-0) = " << std::erf(-0.0) << '\n' << "erf(Inf) = " << std::erf(INFINITY) << '\n'; }
Output:
Normal variate probabilities: [-4:-3]: 0.13% [-3:-2]: 2.14% [-2:-1]: 13.59% [-1: 0]: 34.13% [ 0: 1]: 34.13% [ 1: 2]: 13.59% [ 2: 3]: 2.14% [ 3: 4]: 0.13% Special values: erf(-0) = -0.00 erf(Inf) = 1.00
[edit] See also
(C++11)(C++11)(C++11) |
complementary error function (function) |
C documentation for erf
|
[edit] External links
Weisstein, Eric W. "Erf." From MathWorld — A Wolfram Web Resource. |