Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/random/gamma distribution"

From cppreference.com
< cpp‎ | numeric‎ | random
m (+params)
m (fmt)
 
(28 intermediate revisions by 12 users not shown)
Line 1: Line 1:
 
{{cpp/title|gamma_distribution}}
 
{{cpp/title|gamma_distribution}}
{{cpp/numeric/random/gamma_distribution/sidebar}}
+
{{cpp/numeric/random/gamma_distribution/navbar}}
{{ddcl | header=random | notes={{mark since c++11}} | 1=
+
{{ddcl|header=random|since=c++11|1=
 
template< class RealType = double >
 
template< class RealType = double >
 
class gamma_distribution;
 
class gamma_distribution;
 
}}
 
}}
  
Produces random positive integer values {{math|x}}, distributed according to probability density function:
+
Produces random positive floating-point values {{math|x}}, distributed according to probability density function:
  
:{{math|P(x{{!}}α,β) {{=}} {{mfrac|e{{su|p=-x/β}}|β{{su|p=α}} · Γ(α)}}}}
+
:{{mathjax-or|1=\(\mathsf{p}(x\mid\alpha,\beta) = \frac{e^{-x/\beta} }{\beta^\alpha\cdot\Gamma(\alpha)}\cdot x^{\alpha-1} \)|2=P(x{{!}}α,β) {{=}} {{mfrac|e{{su|p=-x/β}}|β{{su|p=α}} · Γ(α)}} · x{{su|p=α-1}}}}
  
where {{math|α}} is known as the ''shape'' parameter and {{math|β}} is known as the ''scale'' parameter.
+
where {{math|α}} is known as the ''shape'' parameter and {{math|β}} is known as the ''scale'' parameter. The shape parameter is sometimes denoted by the letter {{math|k}} and the scale parameter is sometimes denoted by the letter {{math|θ}}.
  
For integer {{math|α}}, the value obtained is the sum of {{math|α}} independent exponentially distributed random variables, each of which has a mean of {{math|β}}
+
For floating-point {{math|α}}, the value obtained is the sum of {{math|α}} independent exponentially distributed random variables, each of which has a mean of {{math|β}}.
 +
 
 +
{{tt|std::gamma_distribution}} satisfies {{named req|RandomNumberDistribution}}.
 +
 
 +
===Template parameters===
 +
{{par begin}}
 +
{{cpp/numeric/random/param_list|RealType}}
 +
{{par end}}
  
 
===Member types===
 
===Member types===
{{tdcl list begin}}
+
{{dsc begin}}
{{tdcl list hitem | Member type | Definition}}
+
{{dsc hitem|Member type|Definition}}
{{tdcl list item | {{tt|result_type}} | {{cpp|RealType}}}}
+
{{dsc|{{tt|result_type}} {{mark c++11}}|{{co|RealType}}}}
{{tdcl list item | {{tt|param_type}} | the type of the parameter set, unspecified}}
+
{{cpp/numeric/random/param_type}}
{{tdcl list end}}
+
{{dsc end}}
  
 
===Member functions===
 
===Member functions===
{{dcl list begin}}
+
{{dsc begin}}
{{dcl list template | cpp/numeric/random/distribution/dcl list constructor | gamma_distribution}}
+
{{dsc inc|cpp/numeric/random/distribution/dsc constructor|gamma_distribution}}
{{dcl list template | cpp/numeric/random/distribution/dcl list reset | gamma_distribution}}
+
{{dsc inc|cpp/numeric/random/distribution/dsc reset|gamma_distribution}}
  
{{dcl list h2 | Generation}}
+
{{dsc h2|Generation}}
{{dcl list template | cpp/numeric/random/distribution/dcl list operator() | gamma_distribution}}
+
{{dsc inc|cpp/numeric/random/distribution/dsc operator()|gamma_distribution}}
  
{{dcl list h2 | Characteristics}}
+
{{dsc h2|Characteristics}}
{{dcl list template | cpp/numeric/random/gamma_distribution/dcl list alpha}}
+
{{dsc inc|cpp/numeric/random/distribution/dsc params|gamma_distribution}}
{{dcl list template | cpp/numeric/random/gamma_distribution/dcl list beta}}
+
{{dsc inc|cpp/numeric/random/distribution/dsc param|gamma_distribution}}
{{dcl list template | cpp/numeric/random/distribution/dcl list param | gamma_distribution}}
+
{{dsc inc|cpp/numeric/random/distribution/dsc min|gamma_distribution}}
{{dcl list template | cpp/numeric/random/distribution/dcl list min | gamma_distribution}}
+
{{dsc inc|cpp/numeric/random/distribution/dsc max|gamma_distribution}}
{{dcl list template | cpp/numeric/random/distribution/dcl list max | gamma_distribution}}
+
{{dsc end}}
{{dcl list end}}
+
  
 
===Non-member functions===
 
===Non-member functions===
{{dcl list begin}}
+
{{dsc begin}}
{{dcl list template | cpp/numeric/random/distribution/dcl list operator_cmp | gamma_distribution }}
+
{{dsc inc|cpp/numeric/random/distribution/dsc operator_cmp|gamma_distribution}}
{{dcl list template | cpp/numeric/random/distribution/dcl list operator_ltltgtgt | gamma_distribution}}
+
{{dsc inc|cpp/numeric/random/distribution/dsc operator_ltltgtgt|gamma_distribution}}
{{dcl list end}}
+
{{dsc end}}
  
 
===Example===
 
===Example===
{{example cpp
+
{{example
| code=
+
|code=
| output=
+
#include <iomanip>
 +
#include <iostream>
 +
#include <map>
 +
#include <random>
 +
#include <string>
 +
 
 +
int main()
 +
{
 +
    std::random_device rd;
 +
    std::mt19937 gen(rd());
 +
 
 +
    // A gamma distribution with alpha = 1, and beta = 2
 +
    // approximates an exponential distribution.
 +
    std::gamma_distribution<> d(1, 2);
 +
 
 +
    std::map<int, int> hist;
 +
    for (int n = 0; n != 10000; ++n)
 +
        ++hist[2 * d(gen)];
 +
 
 +
    for (auto const& [x, y] : hist)
 +
        if (y / 100.0 > 0.5)
 +
            std::cout << std::fixed << std::setprecision(1)
 +
                      << x / 2.0 << '-' << (x + 1) / 2.0 << ' '
 +
                      << std::string(y / 100, '*') << '\n';
 +
}
 +
|p=true
 +
|output=
 +
0.0-0.5 **********************
 +
0.5-1.0 ****************
 +
1.0-1.5 *************
 +
1.5-2.0 **********
 +
2.0-2.5 ********
 +
2.5-3.0 ******
 +
3.0-3.5 *****
 +
3.5-4.0 ****
 +
4.0-4.5 ***
 +
4.5-5.0 **
 +
5.0-5.5 **
 +
5.5-6.0 *
 +
6.0-6.5 *
 +
6.5-7.0
 +
7.0-7.5
 +
7.5-8.0
 
}}
 
}}
  
 
===External links===
 
===External links===
[http://mathworld.wolfram.com/GammaDistribution.html Weisstein, Eric W. "Gamma Distribution."] From MathWorld--A Wolfram Web Resource.
+
{{eli|[https://mathworld.wolfram.com/GammaDistribution.html Weisstein, Eric W. "Gamma Distribution."] From MathWorld &mdash; A Wolfram Web Resource.}}
 +
 
 +
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}

Latest revision as of 10:37, 17 October 2023

 
 
 
 
 
Defined in header <random>
template< class RealType = double >
class gamma_distribution;
(since C++11)

Produces random positive floating-point values x, distributed according to probability density function:

P(x|α,β) =
e-x/β
βα · Γ(α)
· xα-1

where α is known as the shape parameter and β is known as the scale parameter. The shape parameter is sometimes denoted by the letter k and the scale parameter is sometimes denoted by the letter θ.

For floating-point α, the value obtained is the sum of α independent exponentially distributed random variables, each of which has a mean of β.

std::gamma_distribution satisfies RandomNumberDistribution.

Contents

[edit] Template parameters

RealType - The result type generated by the generator. The effect is undefined if this is not one of float, double, or long double.

[edit] Member types

Member type Definition
result_type (C++11) RealType
param_type (C++11) the type of the parameter set, see RandomNumberDistribution.

[edit] Member functions

constructs new distribution
(public member function) [edit]
(C++11)
resets the internal state of the distribution
(public member function) [edit]
Generation
generates the next random number in the distribution
(public member function) [edit]
Characteristics
(C++11)
returns the distribution parameters
(public member function) [edit]
(C++11)
gets or sets the distribution parameter object
(public member function) [edit]
(C++11)
returns the minimum potentially generated value
(public member function) [edit]
(C++11)
returns the maximum potentially generated value
(public member function) [edit]

[edit] Non-member functions

(C++11)(C++11)(removed in C++20)
compares two distribution objects
(function) [edit]
performs stream input and output on pseudo-random number distribution
(function template) [edit]

[edit] Example

#include <iomanip>
#include <iostream>
#include <map>
#include <random>
#include <string>
 
int main()
{
    std::random_device rd;
    std::mt19937 gen(rd());
 
    // A gamma distribution with alpha = 1, and beta = 2
    // approximates an exponential distribution.
    std::gamma_distribution<> d(1, 2);
 
    std::map<int, int> hist;
    for (int n = 0; n != 10000; ++n)
        ++hist[2 * d(gen)];
 
    for (auto const& [x, y] : hist)
        if (y / 100.0 > 0.5)
            std::cout << std::fixed << std::setprecision(1)
                      << x / 2.0 << '-' << (x + 1) / 2.0 << ' '
                      << std::string(y / 100, '*') << '\n';
}

Possible output:

0.0-0.5 **********************
0.5-1.0 ****************
1.0-1.5 *************
1.5-2.0 **********
2.0-2.5 ********
2.5-3.0 ******
3.0-3.5 *****
3.5-4.0 ****
4.0-4.5 ***
4.5-5.0 **
5.0-5.5 **
5.5-6.0 *
6.0-6.5 *
6.5-7.0
7.0-7.5
7.5-8.0

[edit] External links

Weisstein, Eric W. "Gamma Distribution." From MathWorld — A Wolfram Web Resource.