Difference between revisions of "cpp/numeric/constants"
From cppreference.com
m (Added Spanish link) |
(Links to the definition of “program-defined type”.) |
||
(20 intermediate revisions by 7 users not shown) | |||
Line 2: | Line 2: | ||
{{cpp/numeric/constants/navbar}} | {{cpp/numeric/constants/navbar}} | ||
− | === Constants {{mark since c++20}} === | + | ===Constants {{mark since c++20}}=== |
{{dsc begin}} | {{dsc begin}} | ||
{{dsc header|numbers}} | {{dsc header|numbers}} | ||
{{dsc namespace|std::numbers}} | {{dsc namespace|std::numbers}} | ||
− | {{dsc tvar | e_v | nolink=true | | + | {{dsc tvar|e_v|nolink=true|{{enwiki|E (mathematical constant)|the mathematical constant {{mathjax-or|\(\small e\)|e}}}}}} |
− | {{dsc tvar | log2e_v | nolink=true | {{mathjax-or|1=\(\log_{2}e\)|2=log{{su|b=2}}e}}}} | + | {{dsc tvar|log2e_v|nolink=true|{{mathjax-or|1=\(\log_{2}e\)|2=log{{su|b=2}}e}}}} |
− | {{dsc tvar | log10e_v | nolink=true | {{mathjax-or|1=\(\log_{10}e\)|2=log{{su|b=10}}e}}}} | + | {{dsc tvar|log10e_v|nolink=true|{{mathjax-or|1=\(\log_{10}e\)|2=log{{su|b=10}}e}}}} |
− | {{dsc tvar | pi_v | nolink=true | {{mathjax-or|1=\(\pi\)|2=π}} }} | + | {{dsc tvar|pi_v|nolink=true|{{enwiki|Pi (mathematical constant)|the mathematical constant {{mathjax-or|1=\(\pi\)|2=π}}}}}} |
− | {{dsc tvar | inv_pi_v | nolink=true | {{mathjax-or|1=\(\frac1\pi\)|2={{mfrac|1|π}} }} }} | + | {{dsc tvar|inv_pi_v|nolink=true|{{mathjax-or|1=\(\frac1\pi\)|2={{mfrac|1|π}}}}}} |
− | {{dsc tvar | inv_sqrtpi_v | nolink=true | {{mathjax-or|1=\(\frac1{\sqrt\pi}\)|2={{mfrac|1|{{mrad|π}} }} }} }} | + | {{dsc tvar|inv_sqrtpi_v|nolink=true|{{mathjax-or|1=\(\frac1{\sqrt\pi}\)|2={{mfrac|1|{{mrad|π}}}}}}}} |
− | {{dsc tvar | ln2_v | nolink=true | {{mathjax-or|1=\(\ln{2}\)|2=ln 2}}}} | + | {{dsc tvar|ln2_v|nolink=true|{{mathjax-or|1=\(\ln{2}\)|2=ln 2}}}} |
− | {{dsc tvar | ln10_v | nolink=true | {{mathjax-or|1=\(\ln{10}\)|2=ln 10}}}} | + | {{dsc tvar|ln10_v|nolink=true|{{mathjax-or|1=\(\ln{10}\)|2=ln 10}}}} |
− | {{dsc tvar | sqrt2_v | nolink=true |{{mathjax-or|1=\(\sqrt2\)|2={{mrad|2}}}}}} | + | {{dsc tvar|sqrt2_v|nolink=true|{{mathjax-or|1=\(\sqrt2\)|2={{mrad|2}}}}}} |
− | {{dsc tvar | sqrt3_v | nolink=true |{{mathjax-or|1=\(\sqrt3\)|2={{mrad|3}}}}}} | + | {{dsc tvar|sqrt3_v|nolink=true|{{mathjax-or|1=\(\sqrt3\)|2={{mrad|3}}}}}} |
− | {{dsc tvar | inv_sqrt3_v | nolink=true | {{mathjax-or|1=\(\frac1{\sqrt3}\)|2={{mfrac|1|{{mrad|3}} }} }} }} | + | {{dsc tvar|inv_sqrt3_v|nolink=true|{{mathjax-or|1=\(\frac1{\sqrt3}\)|2={{mfrac|1|{{mrad|3}}}}}}}} |
− | {{dsc tvar | egamma_v | nolink=true | | + | {{dsc tvar|egamma_v|nolink=true|{{enwiki|Euler's constant|the Euler–Mascheroni constant γ}}}} |
− | {{dsc tvar | phi_v | nolink=true | | + | {{dsc tvar|phi_v|nolink=true|{{enwiki|Golden ratio|the golden ratio Φ}} ({{mathjax-or|1=\(\frac{1+\sqrt5}2\)|2={{mfrac|1 + {{mrad|5}}|2}}}})}} |
− | {{dsc const | {{dsc small|inline constexpr double}} e | nolink=true | {{c|e_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} e|nolink=true|{{c|e_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} log2e | nolink=true | {{c|log2e_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} log2e|nolink=true|{{c|log2e_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} log10e | nolink=true | {{c|log10e_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} log10e|nolink=true|{{c|log10e_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} pi | nolink=true | {{c|pi_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} pi|nolink=true|{{c|pi_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} inv_pi | nolink=true | {{c|inv_pi_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} inv_pi|nolink=true|{{c|inv_pi_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} inv_sqrtpi | nolink=true | {{c|inv_sqrtpi_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} inv_sqrtpi|nolink=true|{{c|inv_sqrtpi_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} ln2 | nolink=true | {{c|ln2_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} ln2|nolink=true|{{c|ln2_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} ln10 | nolink=true | {{c|ln10_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} ln10|nolink=true|{{c|ln10_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} sqrt2 | nolink=true | {{c|sqrt2_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} sqrt2|nolink=true|{{c|sqrt2_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} sqrt3 | nolink=true | {{c|sqrt3_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} sqrt3|nolink=true|{{c|sqrt3_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} inv_sqrt3 | nolink=true | {{c|inv_sqrt3_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} inv_sqrt3|nolink=true|{{c|inv_sqrt3_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} egamma | nolink=true | {{c|egamma_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} egamma|nolink=true|{{c|egamma_v<double>}}}} |
− | {{dsc const | {{dsc small|inline constexpr double}} phi | nolink=true | {{c|phi_v<double>}} }} | + | {{dsc const|{{dsc small|inline constexpr double}} phi|nolink=true|{{c|phi_v<double>}}}} |
{{dsc end}} | {{dsc end}} | ||
Line 37: | Line 37: | ||
A program that instantiates a primary template of a mathematical constant variable template is ill-formed. | A program that instantiates a primary template of a mathematical constant variable template is ill-formed. | ||
− | The standard library specializes mathematical constant variable templates for all floating-point types (i.e. {{c|float}}, {{c|double}} and {{c|long double}}). | + | The standard library specializes mathematical constant variable templates for all floating-point types (i.e. {{c/core|float}}, {{c/core|double}} and {{c/core|long double}}). |
− | A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a | + | A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a {{lsd|cpp/language/type#Program-defined type}}. |
+ | {{feature test macro|__cpp_lib_math_constants|std=c++20|value=201907L|[[#top|Mathematical constants]]}} | ||
− | {{langlinks|es|ja|zh}} | + | ===Example=== |
+ | {{example|code= | ||
+ | #include <cmath> | ||
+ | #include <iomanip> | ||
+ | #include <iostream> | ||
+ | #include <limits> | ||
+ | #include <numbers> | ||
+ | #include <string_view> | ||
+ | |||
+ | auto egamma_aprox(const unsigned iterations) | ||
+ | { | ||
+ | long double s = 0; | ||
+ | for (unsigned m = 2; m < iterations; ++m) | ||
+ | { | ||
+ | if (const long double t = std::riemann_zetal(m) / m; m % 2) | ||
+ | s -= t; | ||
+ | else | ||
+ | s += t; | ||
+ | } | ||
+ | return s; | ||
+ | }; | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | using namespace std::numbers; | ||
+ | |||
+ | const auto x = std::sqrt(inv_pi) / inv_sqrtpi + | ||
+ | std::ceil(std::exp2(log2e)) + sqrt3 * inv_sqrt3 + std::exp(0); | ||
+ | const auto v = (phi * phi - phi) + 1 / std::log2(sqrt2) + | ||
+ | log10e * ln10 + std::pow(e, ln2) - std::cos(pi); | ||
+ | |||
+ | std::cout << "The answer is " << x * v << '\n'; | ||
+ | |||
+ | using namespace std::string_view_literals; | ||
+ | constexpr auto γ = "0.577215664901532860606512090082402"sv; | ||
+ | |||
+ | std::cout | ||
+ | << "γ as 10⁶ sums of ±ζ(m)/m = " | ||
+ | << egamma_aprox(1'000'000) << '\n' | ||
+ | << "γ as egamma_v<float> = " | ||
+ | << std::setprecision(std::numeric_limits<float>::digits10 + 1) | ||
+ | << egamma_v<float> << '\n' | ||
+ | << "γ as egamma_v<double> = " | ||
+ | << std::setprecision(std::numeric_limits<double>::digits10 + 1) | ||
+ | << egamma_v<double> << '\n' | ||
+ | << "γ as egamma_v<long double> = " | ||
+ | << std::setprecision(std::numeric_limits<long double>::digits10 + 1) | ||
+ | << egamma_v<long double> << '\n' | ||
+ | << "γ with " << γ.length() - 1 << " digits precision = " << γ << '\n'; | ||
+ | } | ||
+ | |p=true | ||
+ | |output= | ||
+ | The answer is 42 | ||
+ | γ as 10⁶ sums of ±ζ(m)/m = 0.577215 | ||
+ | γ as egamma_v<float> = 0.5772157 | ||
+ | γ as egamma_v<double> = 0.5772156649015329 | ||
+ | γ as egamma_v<long double> = 0.5772156649015328606 | ||
+ | γ with 34 digits precision = 0.577215664901532860606512090082402 | ||
+ | }} | ||
+ | |||
+ | ===See also=== | ||
+ | {{dsc begin}} | ||
+ | {{dsc inc|cpp/numeric/ratio/dsc ratio}} | ||
+ | {{dsc end}} | ||
+ | |||
+ | {{langlinks|es|ja|ru|zh}} |
Latest revision as of 19:03, 13 March 2024
Contents |
[edit] Constants (since C++20)
Defined in header
<numbers> | |||
Defined in namespace
std::numbers | |||
e_v |
the mathematical constant e (variable template) | ||
log2e_v |
log2e (variable template) | ||
log10e_v |
log10e (variable template) | ||
pi_v |
the mathematical constant π (variable template) | ||
inv_pi_v |
(variable template) | ||
inv_sqrtpi_v |
(variable template) | ||
ln2_v |
ln 2 (variable template) | ||
ln10_v |
ln 10 (variable template) | ||
sqrt2_v |
√2 (variable template) | ||
sqrt3_v |
√3 (variable template) | ||
inv_sqrt3_v |
(variable template) | ||
egamma_v |
the Euler–Mascheroni constant γ (variable template) | ||
phi_v |
the golden ratio Φ (
(variable template) | ||
inline constexpr double e |
e_v<double> (constant) | ||
inline constexpr double log2e |
log2e_v<double> (constant) | ||
inline constexpr double log10e |
log10e_v<double> (constant) | ||
inline constexpr double pi |
pi_v<double> (constant) | ||
inline constexpr double inv_pi |
inv_pi_v<double> (constant) | ||
inline constexpr double inv_sqrtpi |
inv_sqrtpi_v<double> (constant) | ||
inline constexpr double ln2 |
ln2_v<double> (constant) | ||
inline constexpr double ln10 |
ln10_v<double> (constant) | ||
inline constexpr double sqrt2 |
sqrt2_v<double> (constant) | ||
inline constexpr double sqrt3 |
sqrt3_v<double> (constant) | ||
inline constexpr double inv_sqrt3 |
inv_sqrt3_v<double> (constant) | ||
inline constexpr double egamma |
egamma_v<double> (constant) | ||
inline constexpr double phi |
phi_v<double> (constant) |
[edit] Notes
A program that instantiates a primary template of a mathematical constant variable template is ill-formed.
The standard library specializes mathematical constant variable templates for all floating-point types (i.e. float, double and long double).
A program may partially or explicitly specialize a mathematical constant variable template provided that the specialization depends on a program-defined type.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_math_constants |
201907L | (c++20) | Mathematical constants |
[edit] Example
Run this code
#include <cmath> #include <iomanip> #include <iostream> #include <limits> #include <numbers> #include <string_view> auto egamma_aprox(const unsigned iterations) { long double s = 0; for (unsigned m = 2; m < iterations; ++m) { if (const long double t = std::riemann_zetal(m) / m; m % 2) s -= t; else s += t; } return s; }; int main() { using namespace std::numbers; const auto x = std::sqrt(inv_pi) / inv_sqrtpi + std::ceil(std::exp2(log2e)) + sqrt3 * inv_sqrt3 + std::exp(0); const auto v = (phi * phi - phi) + 1 / std::log2(sqrt2) + log10e * ln10 + std::pow(e, ln2) - std::cos(pi); std::cout << "The answer is " << x * v << '\n'; using namespace std::string_view_literals; constexpr auto γ = "0.577215664901532860606512090082402"sv; std::cout << "γ as 10⁶ sums of ±ζ(m)/m = " << egamma_aprox(1'000'000) << '\n' << "γ as egamma_v<float> = " << std::setprecision(std::numeric_limits<float>::digits10 + 1) << egamma_v<float> << '\n' << "γ as egamma_v<double> = " << std::setprecision(std::numeric_limits<double>::digits10 + 1) << egamma_v<double> << '\n' << "γ as egamma_v<long double> = " << std::setprecision(std::numeric_limits<long double>::digits10 + 1) << egamma_v<long double> << '\n' << "γ with " << γ.length() - 1 << " digits precision = " << γ << '\n'; }
Possible output:
The answer is 42 γ as 10⁶ sums of ±ζ(m)/m = 0.577215 γ as egamma_v<float> = 0.5772157 γ as egamma_v<double> = 0.5772156649015329 γ as egamma_v<long double> = 0.5772156649015328606 γ with 34 digits precision = 0.577215664901532860606512090082402
[edit] See also
(C++11) |
represents exact rational fraction (class template) |