Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/iterator/indirect equivalence relation"

From cppreference.com
< cpp‎ | iterator
m (Synopsis: {{ddcl}}, decreasing the width)
(Applied P2997R1 (Removing the common reference requirement from the indirectly invocable concepts).)
Line 1: Line 1:
 
{{cpp/title|indirect_equivalence_relation}}
 
{{cpp/title|indirect_equivalence_relation}}
 
{{cpp/iterator/navbar}}
 
{{cpp/iterator/navbar}}
{{ddcl|header=iterator|since=c++20|1=
+
{{dcl begin}}
 +
{{dcl header|iterator}}
 +
{{dcl rev begin}}
 +
{{dcl|since=c++20|until=c++26|1=
 
template< class F, class I1, class I2 = I1 >
 
template< class F, class I1, class I2 = I1 >
 
concept indirect_equivalence_relation =
 
concept indirect_equivalence_relation =
Line 7: Line 10:
 
     std::indirectly_readable<I2> &&
 
     std::indirectly_readable<I2> &&
 
     std::copy_constructible<F> &&
 
     std::copy_constructible<F> &&
     std::equivalence_relation<F&, std::iter_value_t<I1>&, std::iter_value_t<I2>&> &&
+
     std::equivalence_relation
     std::equivalence_relation<F&, std::iter_value_t<I1>&, std::iter_reference_t<I2>> &&
+
        <F&, std::iter_value_t<I1>&, std::iter_value_t<I2>&> &&
     std::equivalence_relation<F&, std::iter_reference_t<I1>, std::iter_value_t<I2>&> &&
+
     std::equivalence_relation
     std::equivalence_relation<F&, std::iter_reference_t<I1>, std::iter_reference_t<I2>> &&
+
        <F&, std::iter_value_t<I1>&, std::iter_reference_t<I2>> &&
     std::equivalence_relation<F&, std::iter_common_reference_t<I1>,
+
     std::equivalence_relation
                                  std::iter_common_reference_t<I2>>;
+
        <F&, std::iter_reference_t<I1>, std::iter_value_t<I2>&> &&
 +
     std::equivalence_relation
 +
        <F&, std::iter_reference_t<I1>, std::iter_reference_t<I2>> &&
 +
     std::equivalence_relation
 +
        <F&, std::iter_common_reference_t<I1>, std::iter_common_reference_t<I2>>;
 
}}
 
}}
 +
{{dcl|since=c++26|1=
 +
template< class F, class I1, class I2 = I1 >
 +
concept indirect_equivalence_relation =
 +
    std::indirectly_readable<I1> &&
 +
    std::indirectly_readable<I2> &&
 +
    std::copy_constructible<F> &&
 +
    std::equivalence_relation
 +
        <F&, std::iter_value_t<I1>&, std::iter_value_t<I2>&> &&
 +
    std::equivalence_relation
 +
        <F&, std::iter_value_t<I1>&, std::iter_reference_t<I2>> &&
 +
    std::equivalence_relation
 +
        <F&, std::iter_reference_t<I1>, std::iter_value_t<I2>&> &&
 +
    std::equivalence_relation
 +
        <F&, std::iter_reference_t<I1>, std::iter_reference_t<I2>>;
 +
}}
 +
{{dcl rev end}}
 +
{{dcl end}}
  
 
The concept {{tt|indirect_equivalence_relation}} specifies requirements for algorithms that call equivalence relations as their arguments. The key difference between this concept and {{lc|std::equivalence_relation}} is that it is applied to the types that {{tt|I1}} and {{tt|I2}} references, rather than {{tt|I1}} and {{tt|I2}} themselves.
 
The concept {{tt|indirect_equivalence_relation}} specifies requirements for algorithms that call equivalence relations as their arguments. The key difference between this concept and {{lc|std::equivalence_relation}} is that it is applied to the types that {{tt|I1}} and {{tt|I2}} references, rather than {{tt|I1}} and {{tt|I2}} themselves.
 
===Semantic requirements===
 
{{tt|F}}, {{tt|I1}}, and {{tt|I2}} model {{tt|indirect_equivalence_relation}} only if all concepts it subsumes are modeled.
 
  
 
{{langlinks|es|ja|zh}}
 
{{langlinks|es|ja|zh}}

Revision as of 22:54, 23 July 2024

 
 
Iterator library
Iterator concepts
Iterator primitives
Algorithm concepts and utilities
Indirect callable concepts
indirect_equivalence_relation
(C++20)
Common algorithm requirements
(C++20)
(C++20)
(C++20)
Utilities
(C++20)
Iterator adaptors
Range access
(C++11)(C++14)
(C++14)(C++14)  
(C++11)(C++14)
(C++14)(C++14)  
(C++17)(C++20)
(C++17)
(C++17)
 
Defined in header <iterator>
template< class F, class I1, class I2 = I1 >

concept indirect_equivalence_relation =
    std::indirectly_readable<I1> &&
    std::indirectly_readable<I2> &&
    std::copy_constructible<F> &&
    std::equivalence_relation
        <F&, std::iter_value_t<I1>&, std::iter_value_t<I2>&> &&
    std::equivalence_relation
        <F&, std::iter_value_t<I1>&, std::iter_reference_t<I2>> &&
    std::equivalence_relation
        <F&, std::iter_reference_t<I1>, std::iter_value_t<I2>&> &&
    std::equivalence_relation
        <F&, std::iter_reference_t<I1>, std::iter_reference_t<I2>> &&
    std::equivalence_relation

        <F&, std::iter_common_reference_t<I1>, std::iter_common_reference_t<I2>>;
(since C++20)
(until C++26)
template< class F, class I1, class I2 = I1 >

concept indirect_equivalence_relation =
    std::indirectly_readable<I1> &&
    std::indirectly_readable<I2> &&
    std::copy_constructible<F> &&
    std::equivalence_relation
        <F&, std::iter_value_t<I1>&, std::iter_value_t<I2>&> &&
    std::equivalence_relation
        <F&, std::iter_value_t<I1>&, std::iter_reference_t<I2>> &&
    std::equivalence_relation
        <F&, std::iter_reference_t<I1>, std::iter_value_t<I2>&> &&
    std::equivalence_relation

        <F&, std::iter_reference_t<I1>, std::iter_reference_t<I2>>;
(since C++26)

The concept indirect_equivalence_relation specifies requirements for algorithms that call equivalence relations as their arguments. The key difference between this concept and std::equivalence_relation is that it is applied to the types that I1 and I2 references, rather than I1 and I2 themselves.