Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/types/extent"

From cppreference.com
< cpp‎ | types
m (fmt, {{range}})
m (fmt.)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
{{cpp/title|extent}}
 
{{cpp/title|extent}}
 
{{cpp/meta/navbar}}
 
{{cpp/meta/navbar}}
{{dcl begin}}
+
{{ddcl|header=type_traits|since=c++11|1=
{{dcl header|type_traits}}
+
{{dcl|since=c++11|1=
+
 
template< class T, unsigned N = 0 >
 
template< class T, unsigned N = 0 >
 
struct extent;
 
struct extent;
 
}}
 
}}
{{dcl end}}
 
  
If {{tt|T}} is an array type, provides the member constant {{tt|value}} equal to the number of elements along the {{tt|N}}th dimension of the array, if {{tt|N}} is in {{range|0|std::rank<T>::value}}. For any other type, or if {{tt|T}} is an array of unknown bound along its first dimension and {{tt|N}} is 0, {{tt|value}} is 0.
+
If {{tt|T}} is an array type, provides the member constant {{tt|value}} equal to the number of elements along the {{petty|{{tt|N}}{{sup|th}}}} dimension of the array, if {{tt|N}} is in {{range|0|std::rank<T>::value}}. For any other type, or if {{tt|T}} is an array of unknown bound along its first dimension and {{tt|N}} is {{c|0}}, {{tt|value}} is {{c|0}}.
  
 
{{cpp/types/nospec|v}}
 
{{cpp/types/nospec|v}}
  
=== Helper variable template ===
+
===Helper variable template===
 
{{ddcl|since=c++17|1=
 
{{ddcl|since=c++17|1=
 
template< class T, unsigned N = 0 >
 
template< class T, unsigned N = 0 >
inline constexpr std::size_t extent_v = extent<T, N>::value;
+
constexpr std::size_t extent_v = extent<T, N>::value;
 
}}
 
}}
  
Line 43: Line 40:
 
{{example
 
{{example
 
|code=
 
|code=
#include <iostream>
 
 
#include <type_traits>
 
#include <type_traits>
+
 
 +
static_assert(
 +
    std::extent_v<int[3]> == 3 && // default dimension is 0
 +
    std::extent_v<int[3], 0> == 3 && // the same as above
 +
    std::extent_v<int[3][4], 0> == 3 &&
 +
    std::extent_v<int[3][4], 1> == 4 &&
 +
    std::extent_v<int[3][4], 2> == 0 &&
 +
    std::extent_v<int[]> == 0
 +
);
 +
 
 
int main()
 
int main()
 
{
 
{
    std::cout << std::extent<int[3]>::value << '\n'; //< default dimension is 0
+
     const auto ext = std::extent<int['*']>{};
    std::cout << std::extent<int[3][4], 0>::value << '\n';
+
     static_assert(ext == 42); // with implicit conversion to std::size_t
    std::cout << std::extent<int[3][4], 1>::value << '\n';
+
    std::cout << std::extent<int[3][4], 2>::value << '\n';
+
    std::cout << std::extent<int[]>::value << '\n';
+
+
     const auto ext = std::extent<int[9]>{};
+
     std::cout << ext << '\n'; //< implicit conversion to std::size_t
+
+
    const int ints[] = {1, 2, 3, 4};
+
    std::cout << std::extent<decltype(ints)>::value << '\n'; //< array size
+
  
     [[maybe_unused]] int ary[][3] = { {1, 2, 3} };
+
    const int ints[]{1, 2, 3, 4};
   
+
    static_assert(std::extent_v<decltype(ints)> == 4); // array size
     // ary[0] is type of reference of 'int[3]', so, extent  
+
 
     // cannot calculate correctly and return 0
+
     [[maybe_unused]] int ary[][3] = {<!---->{1, 2, 3}<!---->};
 +
 
 +
     // ary[0] is of type reference to 'int[3]', so, the extent
 +
     // cannot be calculated correctly and it returns 0
 
     static_assert(std::is_same_v<decltype(ary[0]), int(&)[3]>);
 
     static_assert(std::is_same_v<decltype(ary[0]), int(&)[3]>);
     std::cout << std::extent<decltype(ary[0])>::value << '\n';
+
     static_assert(std::extent_v<decltype(ary[0])> == 0);
     // removing reference will give correct extent value 3
+
 
     std::cout << std::extent<std::remove_cvref_t<decltype(ary[0])>>::value << '\n';
+
     // removing reference gives correct extent value 3
 +
     static_assert(std::extent_v<std::remove_cvref_t<decltype(ary[0])>> == 3);
 
}
 
}
|output=
 
3
 
3
 
4
 
0
 
0
 
9
 
4
 
0
 
3
 
 
}}
 
}}
  
Line 87: Line 77:
 
{{dsc inc|cpp/types/dsc remove_extent}}
 
{{dsc inc|cpp/types/dsc remove_extent}}
 
{{dsc inc|cpp/types/dsc remove_all_extents}}
 
{{dsc inc|cpp/types/dsc remove_all_extents}}
 
+
{{dsc inc|cpp/container/mdspan/dsc extents}}
 
{{dsc end}}
 
{{dsc end}}
  
 
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}
 
{{langlinks|de|es|fr|it|ja|pt|ru|zh}}

Latest revision as of 05:15, 24 September 2024

 
 
Metaprogramming library
Type traits
Type categories
(C++11)
(C++14)  
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Type properties
(C++11)
(C++11)
(C++14)
(C++11)
(C++11)(until C++20*)
(C++11)(deprecated in C++20)
(C++11)
Type trait constants
Metafunctions
(C++17)
Supported operations
Relationships and property queries
(C++11)
(C++11)
extent
(C++11)
Type modifications
(C++11)(C++11)(C++11)
Type transformations
(C++11)(deprecated in C++23)
(C++11)(deprecated in C++23)
(C++11)
(C++11)
(C++17)

(C++11)(until C++20*)(C++17)
Compile-time rational arithmetic
Compile-time integer sequences
 
Defined in header <type_traits>
template< class T, unsigned N = 0 >
struct extent;
(since C++11)

If T is an array type, provides the member constant value equal to the number of elements along the Nth dimension of the array, if N is in [0std::rank<T>::value). For any other type, or if T is an array of unknown bound along its first dimension and N is 0, value is 0.

If the program adds specializations for std::extent or std::extent_v(since C++17), the behavior is undefined.

Contents

[edit] Helper variable template

template< class T, unsigned N = 0 >
constexpr std::size_t extent_v = extent<T, N>::value;
(since C++17)

Inherited from std::integral_constant

Member constants

value
[static]
the number of elements along the Nth dimension of T
(public static member constant)

Member functions

operator std::size_t
converts the object to std::size_t, returns value
(public member function)
operator()
(C++14)
returns value
(public member function)

Member types

Type Definition
value_type std::size_t
type std::integral_constant<std::size_t, value>

[edit] Possible implementation

template<class T, unsigned N = 0>
struct extent : std::integral_constant<std::size_t, 0> {};
 
template<class T>
struct extent<T[], 0> : std::integral_constant<std::size_t, 0> {};
 
template<class T, unsigned N>
struct extent<T[], N> : std::extent<T, N - 1> {};
 
template<class T, std::size_t I>
struct extent<T[I], 0> : std::integral_constant<std::size_t, I> {};
 
template<class T, std::size_t I, unsigned N>
struct extent<T[I], N> : std::extent<T, N - 1> {};

[edit] Example

#include <type_traits>
 
static_assert(
    std::extent_v<int[3]> == 3 && // default dimension is 0
    std::extent_v<int[3], 0> == 3 && // the same as above
    std::extent_v<int[3][4], 0> == 3 &&
    std::extent_v<int[3][4], 1> == 4 &&
    std::extent_v<int[3][4], 2> == 0 &&
    std::extent_v<int[]> == 0
);
 
int main()
{
    const auto ext = std::extent<int['*']>{};
    static_assert(ext == 42); // with implicit conversion to std::size_t
 
    const int ints[]{1, 2, 3, 4};
    static_assert(std::extent_v<decltype(ints)> == 4); // array size
 
    [[maybe_unused]] int ary[][3] = {{1, 2, 3}};
 
    // ary[0] is of type reference to 'int[3]', so, the extent
    // cannot be calculated correctly and it returns 0
    static_assert(std::is_same_v<decltype(ary[0]), int(&)[3]>);
    static_assert(std::extent_v<decltype(ary[0])> == 0);
 
    // removing reference gives correct extent value 3
    static_assert(std::extent_v<std::remove_cvref_t<decltype(ary[0])>> == 3);
}

[edit] See also

(C++11)
checks if a type is an array type
(class template) [edit]
(C++11)
obtains the number of dimensions of an array type
(class template) [edit]
removes one extent from the given array type
(class template) [edit]
removes all extents from the given array type
(class template) [edit]
(C++23)
a descriptor of a multidimensional index space of some rank
(class template) [edit]