Difference between revisions of "cpp/algorithm/ranges/is heap"
From cppreference.com
m ({enwiki}; →Possible implementation: 90 symbols width) |
(Wording update.) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
{{dcl|num=1|since=c++20|1= | {{dcl|num=1|since=c++20|1= | ||
template< std::random_access_iterator I, std::sentinel_for<I> S, | template< std::random_access_iterator I, std::sentinel_for<I> S, | ||
− | class Proj = std::identity, std::indirect_strict_weak_order | + | class Proj = std::identity, |
− | + | std::indirect_strict_weak_order | |
+ | <std::projected<I, Proj>> Comp = ranges::less > | ||
constexpr bool is_heap( I first, S last, Comp comp = {}, Proj proj = {} ); | constexpr bool is_heap( I first, S last, Comp comp = {}, Proj proj = {} ); | ||
}} | }} | ||
{{dcl|num=2|since=c++20|1= | {{dcl|num=2|since=c++20|1= | ||
template< ranges::random_access_range R, class Proj = std::identity, | template< ranges::random_access_range R, class Proj = std::identity, | ||
− | std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>> | + | std::indirect_strict_weak_order |
− | + | <std::projected | |
+ | <ranges::iterator_t<R>, Proj>> Comp = ranges::less > | ||
constexpr bool is_heap( R&& r, Comp comp = {}, Proj proj = {} ); | constexpr bool is_heap( R&& r, Comp comp = {}, Proj proj = {} ); | ||
}} | }} | ||
{{dcl end}} | {{dcl end}} | ||
− | Checks | + | Checks whether the specified range represents a [[cpp/algorithm#Heap operations|heap]] with respect to {{c|comp}} and {{c|proj}}. |
− | @1@ | + | @1@ The specified range is {{range|first|last}}. |
− | @2@ | + | @2@ The specified range is {{c|r}}. |
{{cpp/ranges/niebloid}} | {{cpp/ranges/niebloid}} | ||
Line 28: | Line 30: | ||
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par|first, last|the range of elements to examine}} | + | {{par|first, last|the iterator and sentinel designating the range of elements to examine}} |
{{par|r|the range of elements to examine}} | {{par|r|the range of elements to examine}} | ||
− | {{par| | + | {{par|comp|comparator to apply to the projected elements}} |
{{par|proj|projection to apply to the elements}} | {{par|proj|projection to apply to the elements}} | ||
{{par end}} | {{par end}} | ||
===Return value=== | ===Return value=== | ||
− | {{c| | + | @1@ {{c|1=ranges::is_heap_until(first, last, comp, proj) == last}} |
+ | @2@ {{c|1=ranges::is_heap_until(r, comp, proj) == ranges::end(r)}} | ||
===Complexity=== | ===Complexity=== | ||
− | + | {{mathjax-or|\(\scriptsize O(N) \)|O(N)}} applications of {{c|comp}} and {{c|proj}}, where {{mathjax-or|\(\scriptsize N \)|N}} is: | |
− | + | @1@ {{c|ranges::distance(first, last)}} | |
− | + | @2@ {{c|ranges::distance(r)}} | |
− | {{ | + | |
===Possible implementation=== | ===Possible implementation=== | ||
Line 48: | Line 50: | ||
{ | { | ||
template<std::random_access_iterator I, std::sentinel_for<I> S, | template<std::random_access_iterator I, std::sentinel_for<I> S, | ||
− | class Proj = std::identity, std::indirect_strict_weak_order | + | class Proj = std::identity, |
− | + | std::indirect_strict_weak_order | |
+ | <std::projected<I, Proj>> Comp = ranges::less> | ||
constexpr bool operator()(I first, S last, Comp comp = {}, Proj proj = {}) const | constexpr bool operator()(I first, S last, Comp comp = {}, Proj proj = {}) const | ||
{ | { | ||
Line 55: | Line 58: | ||
std::move(comp), std::move(proj))); | std::move(comp), std::move(proj))); | ||
} | } | ||
− | + | ||
template<ranges::random_access_range R, class Proj = std::identity, | template<ranges::random_access_range R, class Proj = std::identity, | ||
− | std::indirect_strict_weak_order<std::projected<ranges::iterator_t<R>, Proj>> | + | std::indirect_strict_weak_order |
− | + | <std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less> | |
constexpr bool operator()(R&& r, Comp comp = {}, Proj proj = {}) const | constexpr bool operator()(R&& r, Comp comp = {}, Proj proj = {}) const | ||
{ | { | ||
Line 66: | Line 69: | ||
}; | }; | ||
− | inline constexpr is_heap_fn is_heap {}; | + | inline constexpr is_heap_fn is_heap{}; |
}} | }} | ||
Line 78: | Line 81: | ||
#include <vector> | #include <vector> | ||
− | void out(const auto& what, int n = 1 | + | void out(const auto& what, int n = 1) |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
{ | { | ||
− | + | while (n-- > 0) | |
− | + | std::cout << what; | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | std::cout << | + | |
− | + | ||
− | + | ||
− | + | ||
} | } | ||
− | void draw_heap( | + | void draw_heap(const auto& v) |
{ | { | ||
auto bails = [](int n, int w) | auto bails = [](int n, int w) | ||
Line 110: | Line 93: | ||
auto b = [](int w) { out("┌"), out("─", w), out("┴"), out("─", w), out("┐"); }; | auto b = [](int w) { out("┌"), out("─", w), out("┴"), out("─", w), out("┐"); }; | ||
n /= 2; | n /= 2; | ||
− | if (!n) return; | + | if (!n) |
− | for (out(' ', w); n-- > 0; ) b(w), out(' ', w + w + 1); | + | return; |
+ | for (out(' ', w); n-- > 0;) | ||
+ | b(w), out(' ', w + w + 1); | ||
out('\n'); | out('\n'); | ||
}; | }; | ||
+ | |||
auto data = [](int n, int w, auto& first, auto last) | auto data = [](int n, int w, auto& first, auto last) | ||
{ | { | ||
Line 120: | Line 106: | ||
out('\n'); | out('\n'); | ||
}; | }; | ||
+ | |||
auto tier = [&](int t, int m, auto& first, auto last) | auto tier = [&](int t, int m, auto& first, auto last) | ||
{ | { | ||
− | const int n {1 << t}; | + | const int n{1 << t}; |
− | const int w {(1 << (m - t - 1)) - 1}; | + | const int w{(1 << (m - t - 1)) - 1}; |
bails(n, w), data(n, w, first, last); | bails(n, w), data(n, w, first, last); | ||
}; | }; | ||
− | const int m {static_cast<int>(std::ceil(std::log2(1 + v.size())))}; | + | |
− | auto first {v.cbegin()}; | + | const int m{static_cast<int>(std::ceil(std::log2(1 + v.size())))}; |
− | for (int i {}; i != m; ++i) tier(i, m, first, v.cend()); | + | auto first{v.cbegin()}; |
+ | for (int i{}; i != m; ++i) | ||
+ | tier(i, m, first, v.cend()); | ||
+ | } | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | std::vector<int> v{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8}; | ||
+ | |||
+ | out("initially, v:\n"); | ||
+ | for (auto i : v) | ||
+ | std::cout << i << ' '; | ||
+ | out('\n'); | ||
+ | |||
+ | if (!std::ranges::is_heap(v)) | ||
+ | { | ||
+ | out("making heap...\n"); | ||
+ | std::ranges::make_heap(v); | ||
+ | } | ||
+ | |||
+ | out("after make_heap, v:\n"); | ||
+ | for (auto t{1U}; auto i : v) | ||
+ | std::cout << i << (std::has_single_bit(++t) ? " │ " : " "); | ||
+ | |||
+ | out("\n" "corresponding binary tree is:\n"); | ||
+ | draw_heap(v); | ||
} | } | ||
|output=<nowiki/> | |output=<nowiki/> |
Latest revision as of 18:37, 15 October 2024
Defined in header <algorithm>
|
||
Call signature |
||
template< std::random_access_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(1) | (since C++20) |
template< ranges::random_access_range R, class Proj = std::identity, std::indirect_strict_weak_order |
(2) | (since C++20) |
Checks whether the specified range represents a heap with respect to comp and proj.
1) The specified range is
[
first,
last)
.2) The specified range is r.
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Contents |
[edit] Parameters
first, last | - | the iterator and sentinel designating the range of elements to examine |
r | - | the range of elements to examine |
comp | - | comparator to apply to the projected elements |
proj | - | projection to apply to the elements |
[edit] Return value
1) ranges::is_heap_until(first, last, comp, proj) == last
2) ranges::is_heap_until(r, comp, proj) == ranges::end(r)
[edit] Complexity
O(N) applications of comp and proj, where N is:
1) ranges::distance(first, last)
2) ranges::distance(r)
[edit] Possible implementation
struct is_heap_fn { template<std::random_access_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_strict_weak_order <std::projected<I, Proj>> Comp = ranges::less> constexpr bool operator()(I first, S last, Comp comp = {}, Proj proj = {}) const { return (last == ranges::is_heap_until(first, last, std::move(comp), std::move(proj))); } template<ranges::random_access_range R, class Proj = std::identity, std::indirect_strict_weak_order <std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less> constexpr bool operator()(R&& r, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj)); } }; inline constexpr is_heap_fn is_heap{}; |
[edit] Example
Run this code
#include <algorithm> #include <bit> #include <cmath> #include <iostream> #include <vector> void out(const auto& what, int n = 1) { while (n-- > 0) std::cout << what; } void draw_heap(const auto& v) { auto bails = [](int n, int w) { auto b = [](int w) { out("┌"), out("─", w), out("┴"), out("─", w), out("┐"); }; n /= 2; if (!n) return; for (out(' ', w); n-- > 0;) b(w), out(' ', w + w + 1); out('\n'); }; auto data = [](int n, int w, auto& first, auto last) { for (out(' ', w); n-- > 0 && first != last; ++first) out(*first), out(' ', w + w + 1); out('\n'); }; auto tier = [&](int t, int m, auto& first, auto last) { const int n{1 << t}; const int w{(1 << (m - t - 1)) - 1}; bails(n, w), data(n, w, first, last); }; const int m{static_cast<int>(std::ceil(std::log2(1 + v.size())))}; auto first{v.cbegin()}; for (int i{}; i != m; ++i) tier(i, m, first, v.cend()); } int main() { std::vector<int> v{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8}; out("initially, v:\n"); for (auto i : v) std::cout << i << ' '; out('\n'); if (!std::ranges::is_heap(v)) { out("making heap...\n"); std::ranges::make_heap(v); } out("after make_heap, v:\n"); for (auto t{1U}; auto i : v) std::cout << i << (std::has_single_bit(++t) ? " │ " : " "); out("\n" "corresponding binary tree is:\n"); draw_heap(v); }
Output:
initially, v: 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 making heap... after make_heap, v: 9 │ 8 9 │ 6 5 8 9 │ 3 5 3 5 3 4 7 2 │ 1 2 3 1 corresponding binary tree is: 9 ┌───────┴───────┐ 8 9 ┌───┴───┐ ┌───┴───┐ 6 5 8 9 ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ 3 5 3 5 3 4 7 2 ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ 1 2 3 1
[edit] See also
(C++20) |
finds the largest subrange that is a max heap (niebloid) |
(C++20) |
creates a max heap out of a range of elements (niebloid) |
(C++20) |
adds an element to a max heap (niebloid) |
(C++20) |
removes the largest element from a max heap (niebloid) |
(C++20) |
turns a max heap into a range of elements sorted in ascending order (niebloid) |
(C++11) |
checks if the given range is a max heap (function template) |