Difference between revisions of "cpp/algorithm/ranges/equal"
m (→See also: + ranges::equal_range for symmetry.) |
(→Notes: + non-short-circuit comparison) |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
{{cpp/algorithm/ranges/navbar}} | {{cpp/algorithm/ranges/navbar}} | ||
{{dcl begin}} | {{dcl begin}} | ||
− | {{dcl header | algorithm}} | + | {{dcl header|algorithm}} |
− | {{dcl h | Call signature}} | + | {{dcl h|Call signature}} |
− | {{dcl | num=1 | since=c++20 |1= | + | {{dcl|num=1|since=c++20|1= |
template< std::input_iterator I1, std::sentinel_for<I1> S1, | template< std::input_iterator I1, std::sentinel_for<I1> S1, | ||
std::input_iterator I2, std::sentinel_for<I2> S2, | std::input_iterator I2, std::sentinel_for<I2> S2, | ||
class Pred = ranges::equal_to, | class Pred = ranges::equal_to, | ||
class Proj1 = std::identity, class Proj2 = std::identity > | class Proj1 = std::identity, class Proj2 = std::identity > | ||
− | + | requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> | |
− | constexpr bool equal( I1 first1, S1 last1, I2 first2, S2 last2, | + | constexpr bool |
− | + | equal( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, | |
+ | Proj1 proj1 = {}, Proj2 proj2 = {} ); | ||
}} | }} | ||
− | {{dcl | num=2 | since=c++20 |1= | + | {{dcl|num=2|since=c++20|1= |
template< ranges::input_range R1, ranges::input_range R2, | template< ranges::input_range R1, ranges::input_range R2, | ||
class Pred = ranges::equal_to, | class Pred = ranges::equal_to, | ||
class Proj1 = std::identity, class Proj2 = std::identity > | class Proj1 = std::identity, class Proj2 = std::identity > | ||
− | + | requires std::indirectly_comparable<ranges::iterator_t<R1>, ranges::iterator_t<R2>, | |
− | + | Pred, Proj1, Proj2> | |
− | constexpr bool equal( R1&& r1, R2&& r2, Pred pred = {}, | + | constexpr bool |
− | + | equal( R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {} ); | |
}} | }} | ||
{{dcl end}} | {{dcl end}} | ||
− | @1@ Returns {{c|true}} if the projected values of the range {{ | + | @1@ Returns {{c|true}} if the projected values of the range {{range|first1|last1}} are equal to the projected values of the range {{range|first2|last2}}, and {{c|false}} otherwise. |
− | @2@ Same as {{v|1}}, but uses {{ | + | @2@ Same as {{v|1}}, but uses {{c|r}} as the source range, as if using {{c|ranges::begin(r)}} as {{c|first}} and {{c|ranges::end(r)}} as {{c|last}}. |
− | Two ranges are considered equal if they have the same number of elements and every pair of corresponding projected elements satisfies {{ | + | Two ranges are considered equal if they have the same number of elements and every pair of corresponding projected elements satisfies {{c|pred}}. That is, {{c|std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2, *first2))}} returns {{c|true}} for all pairs of corresponding elements in both ranges. |
{{cpp/ranges/niebloid}} | {{cpp/ranges/niebloid}} | ||
Line 34: | Line 35: | ||
===Parameters=== | ===Parameters=== | ||
{{par begin}} | {{par begin}} | ||
− | {{par | first1, last1 | an iterator-sentinel pair denoting the first range of the elements to compare}} | + | {{par|first1, last1|an iterator-sentinel pair denoting the first range of the elements to compare}} |
− | {{par | r1 | the first range of the elements to compare}} | + | {{par|r1|the first range of the elements to compare}} |
− | {{par | first2, last2 | an iterator-sentinel pair denoting the second range of the elements to compare}} | + | {{par|first2, last2|an iterator-sentinel pair denoting the second range of the elements to compare}} |
− | {{par | r2 | the second range of the elements to compare}} | + | {{par|r2|the second range of the elements to compare}} |
− | {{par | pred | predicate to apply to the projected elements}} | + | {{par|pred|predicate to apply to the projected elements}} |
− | {{par | proj1 | projection to apply to the first range of elements}} | + | {{par|proj1|projection to apply to the first range of elements}} |
− | {{par | proj2 | projection to apply to the second range of elements}} | + | {{par|proj2|projection to apply to the second range of elements}} |
{{par end}} | {{par end}} | ||
===Return value=== | ===Return value=== | ||
− | If the length of the range {{ | + | If the length of the range {{range|first1|last1}} does not equal the length of the range {{range|first2|last2}}, returns {{c|false}}. |
If the elements in the two ranges are equal after projection, returns {{c|true}}. | If the elements in the two ranges are equal after projection, returns {{c|true}}. | ||
Line 53: | Line 54: | ||
{{tt|ranges::equal}} should not be used to compare the ranges formed by the iterators from {{lc|std::unordered_set}}, {{lc|std::unordered_multiset}}, {{lc|std::unordered_map}}, or {{lc|std::unordered_multimap}} because the order in which the elements are stored in those containers may be different even if the two containers store the same elements. | {{tt|ranges::equal}} should not be used to compare the ranges formed by the iterators from {{lc|std::unordered_set}}, {{lc|std::unordered_multiset}}, {{lc|std::unordered_map}}, or {{lc|std::unordered_multimap}} because the order in which the elements are stored in those containers may be different even if the two containers store the same elements. | ||
− | When comparing entire containers for equality, {{ | + | When comparing entire containers or string views for equality, {{c/core|1=operator==}} for the corresponding type are usually preferred. |
+ | |||
+ | {{tt|ranges::equal}} is not guaranteed to be short-circuit. E.g. if the first pair elements of both ranges do not compare equal, the rest of elements may also be compared. Non-short-circuit comparison may happen when the ranges are compared with {{lc|std::memcmp}} or implementation-specific vectorized algorithms. | ||
===Complexity=== | ===Complexity=== | ||
− | At most | + | At most {{c|min(last1 - first1, last2 - first2)}} applications of the predicate and corresponding projections. |
− | However, if {{ | + | However, if {{c|S1}} and {{c|S2}} both model {{lc|std::sized_sentinel_for}} their respective iterators, and {{c|last1 - first1 !{{=}} last2 - first2}} then no applications of the predicate are made (size mismatch is detected without looking at any elements). |
===Possible implementation=== | ===Possible implementation=== | ||
{{eq fun | {{eq fun | ||
− | + | |1= | |
− | struct equal_fn { | + | struct equal_fn |
+ | { | ||
template<std::input_iterator I1, std::sentinel_for<I1> S1, | template<std::input_iterator I1, std::sentinel_for<I1> S1, | ||
std::input_iterator I2, std::sentinel_for<I2> S2, | std::input_iterator I2, std::sentinel_for<I2> S2, | ||
class Pred = ranges::equal_to, | class Pred = ranges::equal_to, | ||
class Proj1 = std::identity, class Proj2 = std::identity> | class Proj1 = std::identity, class Proj2 = std::identity> | ||
− | + | requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> | |
constexpr bool | constexpr bool | ||
− | + | operator()(I1 first1, S1 last1, I2 first2, S2 last2, | |
− | + | Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const | |
{ | { | ||
− | if constexpr (std::sized_sentinel_for<S1, I1> and std::sized_sentinel_for<S2, I2>) | + | if constexpr (std::sized_sentinel_for<S1, I1> and std::sized_sentinel_for<S2, I2>) |
− | if (std::ranges::distance(first1, last1) != std::ranges::distance(first2, last2)) | + | if (std::ranges::distance(first1, last1) != std::ranges::distance(first2, last2)) |
return false; | return false; | ||
− | |||
− | |||
− | for (; first1 != last1; ++first1, (void)++first2) | + | for (; first1 != last1; ++first1, (void)++first2) |
− | if (!std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2, *first2))) | + | if (!std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2, *first2))) |
return false; | return false; | ||
− | |||
− | |||
return true; | return true; | ||
} | } | ||
− | template<ranges::input_range R1, | + | template<ranges::input_range R1, ranges::input_range R2, |
class Pred = ranges::equal_to, | class Pred = ranges::equal_to, | ||
class Proj1 = std::identity, class Proj2 = std::identity> | class Proj1 = std::identity, class Proj2 = std::identity> | ||
− | + | requires std::indirectly_comparable<ranges::iterator_t<R1>, ranges::iterator_t<R2>, | |
− | + | Pred, Proj1, Proj2> | |
constexpr bool | constexpr bool | ||
− | + | operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const | |
{ | { | ||
return (*this)(ranges::begin(r1), ranges::end(r1), | return (*this)(ranges::begin(r1), ranges::end(r1), | ||
Line 106: | Line 106: | ||
===Example=== | ===Example=== | ||
{{example | {{example | ||
− | + | |The following code uses {{lc|ranges::equal}} to test if a string is a palindrome. | |
− | + | |code= | |
#include <algorithm> | #include <algorithm> | ||
+ | #include <iomanip> | ||
#include <iostream> | #include <iostream> | ||
− | |||
#include <ranges> | #include <ranges> | ||
+ | #include <string_view> | ||
− | bool is_palindrome(const std::string_view s) | + | constexpr bool is_palindrome(const std::string_view s) |
{ | { | ||
namespace views = std::views; | namespace views = std::views; | ||
Line 123: | Line 124: | ||
void test(const std::string_view s) | void test(const std::string_view s) | ||
{ | { | ||
− | std::cout << | + | std::cout << std::quoted(s) << " is " |
− | + | << (is_palindrome(s) ? "" : "not ") | |
− | + | << "a palindrome\n"; | |
} | } | ||
Line 132: | Line 133: | ||
test("radar"); | test("radar"); | ||
test("hello"); | test("hello"); | ||
+ | static_assert(is_palindrome("ABBA") and not is_palindrome("AC/DC")); | ||
} | } | ||
− | + | |output= | |
"radar" is a palindrome | "radar" is a palindrome | ||
"hello" is not a palindrome | "hello" is not a palindrome | ||
Line 140: | Line 142: | ||
===See also=== | ===See also=== | ||
{{dsc begin}} | {{dsc begin}} | ||
− | {{dsc inc | cpp/algorithm/ranges/dsc find}} | + | {{dsc inc|cpp/algorithm/ranges/dsc find}} |
− | {{dsc inc | cpp/algorithm/ranges/dsc lexicographical_compare}} | + | {{dsc inc|cpp/algorithm/ranges/dsc lexicographical_compare}} |
− | {{dsc inc | cpp/algorithm/ranges/dsc mismatch}} | + | {{dsc inc|cpp/algorithm/ranges/dsc mismatch}} |
− | {{dsc inc | cpp/algorithm/ranges/dsc search}} | + | {{dsc inc|cpp/algorithm/ranges/dsc search}} |
− | {{dsc inc | cpp/algorithm/ranges/dsc equal_range}} | + | {{dsc inc|cpp/algorithm/ranges/dsc equal_range}} |
− | {{dsc inc | cpp/utility/functional/dsc equal_to}} | + | {{dsc inc|cpp/utility/functional/dsc equal_to}} |
− | {{dsc inc | cpp/algorithm/dsc equal}} | + | {{dsc inc|cpp/algorithm/dsc equal}} |
{{dsc end}} | {{dsc end}} | ||
{{langlinks|es|ja|ru|zh}} | {{langlinks|es|ja|ru|zh}} |
Latest revision as of 18:46, 11 November 2024
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I1, std::sentinel_for<I1> S1, std::input_iterator I2, std::sentinel_for<I2> S2, |
(1) | (since C++20) |
template< ranges::input_range R1, ranges::input_range R2, class Pred = ranges::equal_to, |
(2) | (since C++20) |
[
first1,
last1)
are equal to the projected values of the range [
first2,
last2)
, and false otherwise.Two ranges are considered equal if they have the same number of elements and every pair of corresponding projected elements satisfies pred. That is, std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2, *first2)) returns true for all pairs of corresponding elements in both ranges.
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Contents |
[edit] Parameters
first1, last1 | - | an iterator-sentinel pair denoting the first range of the elements to compare |
r1 | - | the first range of the elements to compare |
first2, last2 | - | an iterator-sentinel pair denoting the second range of the elements to compare |
r2 | - | the second range of the elements to compare |
pred | - | predicate to apply to the projected elements |
proj1 | - | projection to apply to the first range of elements |
proj2 | - | projection to apply to the second range of elements |
[edit] Return value
If the length of the range [
first1,
last1)
does not equal the length of the range [
first2,
last2)
, returns false.
If the elements in the two ranges are equal after projection, returns true.
Otherwise returns false.
[edit] Notes
ranges::equal
should not be used to compare the ranges formed by the iterators from std::unordered_set, std::unordered_multiset, std::unordered_map, or std::unordered_multimap because the order in which the elements are stored in those containers may be different even if the two containers store the same elements.
When comparing entire containers or string views for equality, operator== for the corresponding type are usually preferred.
ranges::equal
is not guaranteed to be short-circuit. E.g. if the first pair elements of both ranges do not compare equal, the rest of elements may also be compared. Non-short-circuit comparison may happen when the ranges are compared with std::memcmp or implementation-specific vectorized algorithms.
[edit] Complexity
At most min(last1 - first1, last2 - first2) applications of the predicate and corresponding projections.
However, if S1 and S2 both model std::sized_sentinel_for their respective iterators, and last1 - first1 != last2 - first2 then no applications of the predicate are made (size mismatch is detected without looking at any elements).
[edit] Possible implementation
struct equal_fn { template<std::input_iterator I1, std::sentinel_for<I1> S1, std::input_iterator I2, std::sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { if constexpr (std::sized_sentinel_for<S1, I1> and std::sized_sentinel_for<S2, I2>) if (std::ranges::distance(first1, last1) != std::ranges::distance(first2, last2)) return false; for (; first1 != last1; ++first1, (void)++first2) if (!std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2, *first2))) return false; return true; } template<ranges::input_range R1, ranges::input_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<ranges::iterator_t<R1>, ranges::iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { return (*this)(ranges::begin(r1), ranges::end(r1), ranges::begin(r2), ranges::end(r2), std::ref(pred), std::ref(proj1), std::ref(proj2)); } }; inline constexpr equal_fn equal; |
[edit] Example
The following code uses ranges::equal to test if a string is a palindrome.
#include <algorithm> #include <iomanip> #include <iostream> #include <ranges> #include <string_view> constexpr bool is_palindrome(const std::string_view s) { namespace views = std::views; auto forward = s | views::take(s.size() / 2); auto backward = s | views::reverse | views::take(s.size() / 2); return std::ranges::equal(forward, backward); } void test(const std::string_view s) { std::cout << std::quoted(s) << " is " << (is_palindrome(s) ? "" : "not ") << "a palindrome\n"; } int main() { test("radar"); test("hello"); static_assert(is_palindrome("ABBA") and not is_palindrome("AC/DC")); }
Output:
"radar" is a palindrome "hello" is not a palindrome
[edit] See also
(C++20)(C++20)(C++20) |
finds the first element satisfying specific criteria (niebloid) |
returns true if one range is lexicographically less than another (niebloid) | |
(C++20) |
finds the first position where two ranges differ (niebloid) |
(C++20) |
searches for the first occurrence of a range of elements (niebloid) |
(C++20) |
returns range of elements matching a specific key (niebloid) |
function object implementing x == y (class template) | |
determines if two sets of elements are the same (function template) |