Difference between revisions of "cpp/numeric/math/expm1"
From cppreference.com
m (link swap) |
(+detail, example) |
||
Line 3: | Line 3: | ||
{{dcl begin}} | {{dcl begin}} | ||
{{dcl header | cmath}} | {{dcl header | cmath}} | ||
− | {{dcl | since=c++11 | | + | {{dcl | since=c++11 |num=1 | |
float expm1( float arg ); | float expm1( float arg ); | ||
}} | }} | ||
− | {{dcl | since=c++11 | | + | {{dcl | since=c++11 |num=2 | |
double expm1( double arg ); | double expm1( double arg ); | ||
}} | }} | ||
− | {{dcl | since=c++11 | | + | {{dcl | since=c++11 |num=3 | |
long double expm1( long double arg ); | long double expm1( long double arg ); | ||
}} | }} | ||
− | {{dcl | since=c++11 | | + | {{dcl | since=c++11 |num=4 | |
double expm1( Integral arg ); | double expm1( Integral arg ); | ||
}} | }} | ||
{{dcl end}} | {{dcl end}} | ||
− | Computes the ''e'' (Euler's number, {{tt|2.7182818}}) raised to the given power {{tt|arg}}, minus {{c|1}}. This function is more accurate than the expression {{c|std::exp(arg)-1}} if {{tt|arg}} is close to zero. | + | @1-3@ Computes the ''e'' (Euler's number, {{tt|2.7182818}}) raised to the given power {{tt|arg}}, minus {{c|1.0}}. This function is more accurate than the expression {{c|std::exp(arg)-1.0}} if {{tt|arg}} is close to zero. |
+ | @4@ A set of overloads or a function template accepting an argument of any [[cpp/types/is_integral|integral type]]. Equivalent to 2) (the argument is cast to {{c|double}}). | ||
===Parameters=== | ===Parameters=== | ||
Line 25: | Line 26: | ||
===Return value=== | ===Return value=== | ||
− | {{math|e{{su|p=arg}}-1}} | + | If no errors occur {{math|e{{su|p=arg}}-1}} is returned. |
− | If the result is | + | If a range error due to overflow occurs, {{tt|+HUGE_VAL}}, {{tt|+HUGE_VALF}}, or {{tt|+HUGE_VALL}} is returned. |
+ | |||
+ | If a range error occurs due to underflow, the correct result (after rounding) is returned. | ||
+ | |||
+ | ===Error handling=== | ||
+ | Errors are reported as specified in [[cpp/numeric/math/math_errhandling|math_errhandling]] | ||
+ | |||
+ | If the implementation supports IEEE floating-point arithmetic (IEC 60559), | ||
+ | * If the argument is ±0, it is returned, unmodified | ||
+ | * If the argument is -∞, -1 is returned | ||
+ | * If the argument is +∞, +∞ is returned | ||
+ | * If the argument is NaN, NaN is returned | ||
+ | |||
+ | ===Notes=== | ||
+ | The functions {{tt|std::expm1}} and {{lc|std::log1p}} are useful for financial calculations, for example, when calculating small daily interest rates: {{math|(1+x){{su|p=n}}-1}} can be expressed as {{c|std::expm1(n * std::log1p(x))}}. These functions also simplify writing accurate inverse hyperbolic functions. | ||
+ | |||
+ | For IEEE-compatible type {{c|double}}, overflow is guaranteed if {{math|709.8 < arg}} | ||
+ | |||
+ | ===Example=== | ||
+ | {{example | | ||
+ | | code= | ||
+ | #include <iostream> | ||
+ | #include <cmath> | ||
+ | #include <cerrno> | ||
+ | #include <cstring> | ||
+ | #include <cfenv> | ||
+ | #pragma STDC FENV_ACCESS ON | ||
+ | int main() | ||
+ | { | ||
+ | std::cout << "expm1(1) = " << std::expm1(1) << '\n' | ||
+ | << "FV of $100, compounded daily at 1%\n" | ||
+ | << "on a 30/360 calendar for 30 years = " | ||
+ | << 100*(1+std::expm1(360*30*std::log1p(0.01/360))) << '\n' | ||
+ | << "exp(1e-16)-1 = " << std::exp(1e16)-1 | ||
+ | << ", but expm1(1e-16) = " << expm1(1e-16) << '\n'; | ||
+ | // special values | ||
+ | std::cout << "expm1(-0) = " << std::expm1(-0.0) << '\n' | ||
+ | << "expm1(-Inf) = " << std::expm1(-INFINITY) << '\n'; | ||
+ | // error handling | ||
+ | errno=0; std::feclearexcept(FE_ALL_EXCEPT); | ||
+ | std::cout << "expm1(710) = " << std::expm1(710) << '\n'; | ||
+ | if(errno == ERANGE) | ||
+ | std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; | ||
+ | if(std::fetestexcept(FE_OVERFLOW)) | ||
+ | std::cout << " FE_OVERFLOW raised\n"; | ||
+ | } | ||
+ | | p=true | ||
+ | | output= | ||
+ | expm1(1) = 1.71828 | ||
+ | FV of $100, compounded daily at 1% | ||
+ | on a 30/360 calendar for 30 years = 134.985 | ||
+ | exp(1e-16)-1 = inf, but expm1(1e-16) = 1e-16 | ||
+ | expm1(-0) = -0 | ||
+ | expm1(-Inf) = -1 | ||
+ | expm1(710) = inf | ||
+ | errno == ERANGE: Result too large | ||
+ | FE_OVERFLOW raised | ||
+ | }} | ||
===See also=== | ===See also=== |
Revision as of 11:44, 2 June 2014
Defined in header <cmath>
|
||
float expm1( float arg ); |
(1) | (since C++11) |
double expm1( double arg ); |
(2) | (since C++11) |
long double expm1( long double arg ); |
(3) | (since C++11) |
double expm1( Integral arg ); |
(4) | (since C++11) |
1-3) Computes the e (Euler's number,
2.7182818
) raised to the given power arg
, minus 1.0. This function is more accurate than the expression std::exp(arg)-1.0 if arg
is close to zero.4) A set of overloads or a function template accepting an argument of any integral type. Equivalent to 2) (the argument is cast to double).
Contents |
Parameters
arg | - | value of floating-point or Integral type |
Return value
If no errors occur earg-1 is returned.
If a range error due to overflow occurs, +HUGE_VAL
, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is ±0, it is returned, unmodified
- If the argument is -∞, -1 is returned
- If the argument is +∞, +∞ is returned
- If the argument is NaN, NaN is returned
Notes
The functions std::expm1
and std::log1p are useful for financial calculations, for example, when calculating small daily interest rates: (1+x)n-1 can be expressed as std::expm1(n * std::log1p(x)). These functions also simplify writing accurate inverse hyperbolic functions.
For IEEE-compatible type double, overflow is guaranteed if 709.8 < arg
Example
Run this code
#include <iostream> #include <cmath> #include <cerrno> #include <cstring> #include <cfenv> #pragma STDC FENV_ACCESS ON int main() { std::cout << "expm1(1) = " << std::expm1(1) << '\n' << "FV of $100, compounded daily at 1%\n" << "on a 30/360 calendar for 30 years = " << 100*(1+std::expm1(360*30*std::log1p(0.01/360))) << '\n' << "exp(1e-16)-1 = " << std::exp(1e16)-1 << ", but expm1(1e-16) = " << expm1(1e-16) << '\n'; // special values std::cout << "expm1(-0) = " << std::expm1(-0.0) << '\n' << "expm1(-Inf) = " << std::expm1(-INFINITY) << '\n'; // error handling errno=0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "expm1(710) = " << std::expm1(710) << '\n'; if(errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if(std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Possible output:
expm1(1) = 1.71828 FV of $100, compounded daily at 1% on a 30/360 calendar for 30 years = 134.985 exp(1e-16)-1 = inf, but expm1(1e-16) = 1e-16 expm1(-0) = -0 expm1(-Inf) = -1 expm1(710) = inf errno == ERANGE: Result too large FE_OVERFLOW raised
See also
(C++11)(C++11) |
returns e raised to the given power (ex) (function) |
(C++11)(C++11)(C++11) |
returns 2 raised to the given power (2x) (function) |
(C++11)(C++11)(C++11) |
natural logarithm (to base e) of 1 plus the given number (ln(1+x)) (function) |
C documentation for expm1
|