Difference between revisions of "cpp/numeric/math/erfc"
From cppreference.com
m (+ link to C documentation) |
(detail, example) |
||
Line 17: | Line 17: | ||
{{dcl end}} | {{dcl end}} | ||
− | Computes the [[enwiki:Complementary error function|complementary error function]] of {{tt|arg}}. | + | @1-3@ Computes the [[enwiki:Complementary error function|complementary error function]] of {{tt|arg}}, that is {{tt|1.0-erf(arg)}}, but without loss of precision for large {{tt|arg}} |
+ | @4@ A set of overloads or a function template accepting an argument of any [[cpp/types/is_integral|integral type]]. Equivalent to 2) (the argument is cast to {{c|double}}). | ||
===Parameters=== | ===Parameters=== | ||
Line 25: | Line 26: | ||
===Return value=== | ===Return value=== | ||
+ | If no errors occur, value of the complementary error function of {{tt|arg}}, that is {{math|{{mfrac|2|{{mrad|π}}}}{{minteg|arg|∞|{{mexp|-t{{su|p=2}}}}d''t''}}}} or {{math|1-erf(arg)}}, is returned. | ||
− | + | If a range error occurs due to underflow, the correct result (after rounding) is returned | |
− | === | + | ===Error handling=== |
+ | Errors are reported as specified in [[cpp/numeric/math/math_errhandling|math_errhandling]] | ||
+ | If the implementation supports IEEE floating-point arithmetic (IEC 60559), | ||
+ | * If the argument is +∞, +0 is returned | ||
+ | * If the argument is -∞, 2 is returned | ||
+ | * If the argument is NaN, NaN is returned | ||
+ | |||
+ | ===Notes=== | ||
+ | For the IEEE-compatible type {{tt|double}}, underflow is guaranteed if {{tt|arg}} > 26.55. | ||
+ | |||
+ | ===Example=== | ||
+ | {{example|code= | ||
+ | #include <iostream> | ||
+ | #include <cmath> | ||
+ | #include <iomanip> | ||
+ | double normalCDF(double x) | ||
+ | { | ||
+ | return std::erfc(-x*std::sqrt(2))/2; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | std::cout << "normal cumulative distribution function:\n" | ||
+ | << std::fixed << std::setprecision(2); | ||
+ | for(double n=0; n<1; n+=0.1) | ||
+ | std::cout << "normalCDF(" << n << ") " << 100*normalCDF(n) << "%\n"; | ||
+ | |||
+ | std::cout << "special values:\n" | ||
+ | << "erfc(-Inf) = " << std::erfc(-INFINITY) << '\n' | ||
+ | << "erfc(Inf) = " << std::erfc(INFINITY) << '\n'; | ||
+ | } | ||
+ | |output= | ||
+ | normal cumulative distribution function: | ||
+ | normalCDF(0.00) 50.00% | ||
+ | normalCDF(0.10) 57.93% | ||
+ | normalCDF(0.20) 65.54% | ||
+ | normalCDF(0.30) 72.57% | ||
+ | normalCDF(0.40) 78.81% | ||
+ | normalCDF(0.50) 84.13% | ||
+ | normalCDF(0.60) 88.49% | ||
+ | normalCDF(0.70) 91.92% | ||
+ | normalCDF(0.80) 94.52% | ||
+ | normalCDF(0.90) 96.41% | ||
+ | normalCDF(1.00) 97.72% | ||
+ | special values: | ||
+ | erfc(-Inf) = 2.00 | ||
+ | erfc(Inf) = 0.00 | ||
+ | }} | ||
+ | |||
+ | ===See also=== | ||
{{dsc begin}} | {{dsc begin}} | ||
{{dsc inc | cpp/numeric/math/dsc erf}} | {{dsc inc | cpp/numeric/math/dsc erf}} |
Revision as of 22:01, 6 June 2014
Defined in header <cmath>
|
||
float erfc( float arg ); |
(since C++11) | |
double erfc( double arg ); |
(since C++11) | |
long double erfc( long double arg ); |
(since C++11) | |
double erfc( Integral arg ); |
(since C++11) | |
1-3) Computes the complementary error function of
arg
, that is 1.0-erf(arg)
, but without loss of precision for large arg
4) A set of overloads or a function template accepting an argument of any integral type. Equivalent to 2) (the argument is cast to double).
Contents |
Parameters
arg | - | value of a floating-point or Integral type |
Return value
If no errors occur, value of the complementary error function ofarg
, that is 2 |
√π |
If a range error occurs due to underflow, the correct result (after rounding) is returned
Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is +∞, +0 is returned
- If the argument is -∞, 2 is returned
- If the argument is NaN, NaN is returned
Notes
For the IEEE-compatible type double
, underflow is guaranteed if arg
> 26.55.
Example
Run this code
#include <iostream> #include <cmath> #include <iomanip> double normalCDF(double x) { return std::erfc(-x*std::sqrt(2))/2; } int main() { std::cout << "normal cumulative distribution function:\n" << std::fixed << std::setprecision(2); for(double n=0; n<1; n+=0.1) std::cout << "normalCDF(" << n << ") " << 100*normalCDF(n) << "%\n"; std::cout << "special values:\n" << "erfc(-Inf) = " << std::erfc(-INFINITY) << '\n' << "erfc(Inf) = " << std::erfc(INFINITY) << '\n'; }
Output:
normal cumulative distribution function: normalCDF(0.00) 50.00% normalCDF(0.10) 57.93% normalCDF(0.20) 65.54% normalCDF(0.30) 72.57% normalCDF(0.40) 78.81% normalCDF(0.50) 84.13% normalCDF(0.60) 88.49% normalCDF(0.70) 91.92% normalCDF(0.80) 94.52% normalCDF(0.90) 96.41% normalCDF(1.00) 97.72% special values: erfc(-Inf) = 2.00 erfc(Inf) = 0.00
See also
(C++11)(C++11)(C++11) |
error function (function) |
C documentation for erfc
|
External links
Weisstein, Eric W. "Erfc." From MathWorld--A Wolfram Web Resource.