format
|
-
|
pointer to a null-terminated wide string specifying how to interpret the data.
The format string consists of ordinary wide characters (except % ), which are copied unchanged into the output stream, and conversion specifications. Each conversion specification has the following format:
- introductory
% character.
- (optional) one or more flags that modify the behavior of the conversion:
-
- : the result of the conversion is left-justified within the field (by default it is right-justified).
-
+ : the sign of signed conversions is always prepended to the result of the conversion (by default the result is preceded by minus only when it is negative).
- space: if the result of a signed conversion does not start with a sign character, or is empty, space is prepended to the result. It is ignored if
+ flag is present.
-
# : alternative form of the conversion is performed. See the table below for exact effects otherwise the behavior is undefined.
-
0 : for integer and floating-point number conversions, leading zeros are used to pad the field instead of space characters. For integer numbers it is ignored if the precision is explicitly specified. For other conversions using this flag results in undefined behavior. It is ignored if - flag is present.
- (optional) integer value or
* that specifies minimum field width. The result is padded with space characters (by default), if required, on the left when right-justified, or on the right if left-justified. In the case when * is used, the width is specified by an additional argument of type int, which appears before the argument to be converted and the argument supplying precision if one is supplied. If the value of the argument is negative, it results with the - flag specified and positive field width (Note: This is the minimum width: The value is never truncated.).
- (optional)
. followed by integer number or * , or neither that specifies precision of the conversion. In the case when * is used, the precision is specified by an additional argument of type int, which appears before the argument to be converted, but after the argument supplying minimum field width if one is supplied. If the value of this argument is negative, it is ignored. If neither a number nor * is used, the precision is taken as zero. See the table below for exact effects of precision.
- (optional) length modifier that specifies the size of the argument (in combination with the conversion format specifier, it specifies the type of the corresponding argument).
- conversion format specifier.
The following format specifiers are available:
Conversion Specifier
|
Explanation
|
Expected Argument Type
|
Length Modifier →
|
hh
(C99)
|
h
|
(none)
|
l
|
ll
(C99)
|
j
(C99)
|
z
(C99)
|
t
(C99)
|
L
|
%
|
Writes literal % . The full conversion specification must be %% .
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
c
|
- Writes a single character.
The argument is first converted to wchar_t as if by calling btowc.
If the l modifier is used, the wint_t argument is first converted to wchar_t.
|
N/A
|
N/A
|
|
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
s
|
- Writes a character string
The argument must be a pointer to the initial element of a character array containing a multibyte character sequence beginning in the initial shift state, which is converted to wide character array as if by a call to mbrtowc with zero-initialized conversion state.
Precision specifies the maximum number of wide characters to be written. If Precision is not specified, writes every wide characters up to and not including the first null terminator.
If the l specifier is used, the argument must be a pointer to the initial element of an array of wchar_t.
|
N/A
|
N/A
|
|
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
d
i
|
- Converts a signed integer into decimal representation [-]dddd.
Precision specifies the minimum number of digits to appear. The default precision is 1.
If both the converted value and the precision are 0 the conversion results in no characters.
|
|
|
|
|
|
|
|
|
N/A
|
o
|
- Converts an unsigned integer into octal representation oooo.
Precision specifies the minimum number of digits to appear. The default precision is 1.
If both the converted value and the precision are 0 the conversion results in no characters.
In the alternative implementation precision is increased if necessary, to write one leading zero.
In that case if both the converted value and the precision are 0, single 0 is written.
|
|
|
|
|
|
|
|
|
N/A
|
x
X
|
- Converts an unsigned integer into hexadecimal representation hhhh.
For the x conversion letters abcdef are used.
For the X conversion letters ABCDEF are used.
Precision specifies the minimum number of digits to appear. The default precision is 1.
If both the converted value and the precision are 0 the conversion results in no characters.
In the alternative implementation 0x or 0X is prefixed to results if the converted value is nonzero.
|
N/A
|
u
|
- Converts an unsigned integer into decimal representation dddd.
Precision specifies the minimum number of digits to appear.
The default precision is 1.
If both the converted value and the precision are 0 the conversion results in no characters.
|
N/A
|
f
F
|
- Converts floating-point number to the decimal notation in the style [-]ddd.ddd.
Precision specifies the exact number of digits to appear after the decimal point character.
The default precision is 6.
In the alternative implementation decimal point character is written even if no digits follow it.
For infinity and not-a-number conversion style see notes.
|
N/A
|
N/A
|
|
|
N/A
|
N/A
|
N/A
|
N/A
|
|
e
E
|
- Converts floating-point number to the decimal exponent notation.
For the e conversion style [-]d.ddde ±dd is used.
For the E conversion style [-]d.dddE ±dd is used.
The exponent contains at least two digits, more digits are used only if necessary.
If the value is 0, the exponent is also 0.
Precision specifies the exact number of digits to appear after the decimal point character.
The default precision is 6.
In the alternative implementation decimal point character is written even if no digits follow it.
For infinity and not-a-number conversion style see notes.
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
a
A
(C99)
|
- Converts floating-point number to the hexadecimal exponent notation.
For the a conversion style [-]0x h.hhhp ±d is used.
For the A conversion style [-]0X h.hhhP ±d is used.
The first hexadecimal digit is not 0 if the argument is a normalized floating-point value.
If the value is 0, the exponent is also 0.
Precision specifies the exact number of digits to appear after the hexadecimal point character.
The default precision is sufficient for exact representation of the value.
In the alternative implementation decimal point character is written even if no digits follow it.
For infinity and not-a-number conversion style see notes.
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
g
G
|
- Converts floating-point number to decimal or decimal exponent notation depending on the value and the precision.
For the g conversion style conversion with style e or f will be performed.
For the G conversion style conversion with style E or F will be performed.
Let P equal the precision if nonzero, 6 if the precision is not specified, or 1 if the precision is 0. Then, if a conversion with style E would have an exponent of X :
- if P > X ≥ −4, the conversion is with style
f or F and precision P − 1 − X.
- otherwise, the conversion is with style
e or E and precision P − 1.
Unless alternative representation is requested the trailing zeros are removed, also the decimal point character is removed if no fractional part is left.
For infinity and not-a-number conversion style see notes.
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
n
|
- Returns the number of characters written so far by this call to the function.
The result is written to the value pointed to by the argument.
The specification may not contain any flag, field width, or precision.
|
|
|
|
|
|
|
|
|
N/A
|
p
|
Writes an implementation defined character sequence defining a pointer.
|
N/A
|
N/A
|
void*
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
N/A
|
The floating-point conversion functions convert infinity to inf or infinity . Which one is used is implementation defined.
Not-a-number is converted to nan or nan(char_sequence) . Which one is used is implementation defined.
The conversions F , E , G , A output INF , INFINITY , NAN instead.
Even though %c expects int argument, it is safe to pass a char because of the integer promotion that takes place when a variadic function is called.
The correct conversion specifications for the fixed-width character types (int8_t, etc) are defined in the header <inttypes.h> (although PRIdMAX, PRIuMAX, etc is synonymous with %jd , %ju , etc).
The memory-writing conversion specifier %n is a common target of security exploits where format strings depend on user input and is not supported by the bounds-checked printf_s family of functions.
There is a sequence point after the action of each conversion specifier; this permits storing multiple %n results in the same variable or, as an edge case, printing a string modified by an earlier %n within the same call.
If a conversion specification is invalid, the behavior is undefined.
|