Difference between revisions of "cpp/types/disjunction"
(→Notes: +) |
(s/or/OR/) |
||
Line 9: | Line 9: | ||
{{dcl end}} | {{dcl end}} | ||
− | Forms the [https://en.wikipedia.org/wiki/Logical_disjunction logical disjunction] of the type traits {{tt|B...}}, effectively performing a logical | + | Forms the [https://en.wikipedia.org/wiki/Logical_disjunction logical disjunction] of the type traits {{tt|B...}}, effectively performing a logical OR on the sequence of traits. |
The specialization {{c|std::disjunction<B1, ..., BN>}} has a public and unambiguous base that is | The specialization {{c|std::disjunction<B1, ..., BN>}} has a public and unambiguous base that is |
Revision as of 03:50, 4 May 2017
Defined in header <type_traits>
|
||
template<class... B> struct disjunction; |
(1) | (since C++17) |
Forms the logical disjunction of the type traits B...
, effectively performing a logical OR on the sequence of traits.
The specialization std::disjunction<B1, ..., BN> has a public and unambiguous base that is
- if sizeof...(B) == 0, std::false_type; otherwise
- the first type
Bi
inB1, ..., BN
for which bool(Bi::value) == true, orBN
if there is no such type.
The member names of the base class, other than disjunction
and operator=
, are not hidden and are unambiguously available in disjunction
.
Disjunction is short-circuiting: if there is a template type argument Bi
with bool(Bi::value) != false, then instantiating disjunction<B1, ..., BN>::value does not require the instantiation of Bj::value for j > i
Contents |
Template parameters
B... | - | every template argument Bi for which Bi::value is instantiated must be usable as a base class and define member value that is convertible to bool
|
Helper variable template
template<class... B> inline constexpr bool disjunction_v = disjunction<B...>::value; |
(since C++17) | |
Possible implementation
template<class...> struct disjunction : std::false_type { }; template<class B1> struct disjunction<B1> : B1 { }; template<class B1, class... Bn> struct disjunction<B1, Bn...> : std::conditional_t<bool(B1::value), B1, disjunction<Bn...>> { }; |
Notes
A specialization of disjunction
does not necessarily inherit from of either std::true_type or std::false_type: it simply inherits from the first B
whose ::value
, explicitly converted to bool
, is true, or from the very last B when all of them convert to false. For example, std::disjunction<std::integral_constant<int, 2>, std::integral_constant<int, 4>>::value is 2.
The short-circuit instantiation differentiates disjunction
from fold expressions: a fold expression like (... || Bs::value) instantiates every B
in Bs
, while std::disjunction_v<Bs...> stops instantiation once the value can be determined. This is particularly useful if the later type is expensive to instantiate or can cause a hard error when instantiated with the wrong type.
Example
#include <iostream> #include <type_traits> using result0 = std::disjunction<std::bool_constant<false>, std::bool_constant<false>, std::bool_constant<false>>; using result1 = std::disjunction<std::bool_constant<true>, std::bool_constant<false>, std::bool_constant<false>>; int main() { std::cout << std::boolalpha; std::cout << result0::value << '\n'; std::cout << result1::value << '\n'; }
Output:
false true
See also
(C++17) |
logical NOT metafunction (class template) |
(C++17) |
variadic logical AND metafunction (class template) |