Difference between revisions of "cpp/algorithm/partial sum"
(example to use both forms of the function (not terribly imaginative)) |
(→Example: formatting) |
||
Line 88: | Line 88: | ||
std::cout << "The first 10 even numbers are: "; | std::cout << "The first 10 even numbers are: "; | ||
− | std::partial_sum(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, " ")); | + | std::partial_sum(v.begin(), v.end(), |
+ | std::ostream_iterator<int>(std::cout, " ")); | ||
std::cout << '\n'; | std::cout << '\n'; | ||
Line 94: | Line 95: | ||
std::cout << "The first 10 powers of 2 are: "; | std::cout << "The first 10 powers of 2 are: "; | ||
for(auto n: v) { | for(auto n: v) { | ||
− | std::cout << n << | + | std::cout << n << " "; |
} | } | ||
std::cout << '\n'; | std::cout << '\n'; |
Revision as of 09:01, 24 August 2011
Template:cpp/algorithm/sidebar Template:ddcl list begin <tr class="t-dsc-header">
<td><numeric>
<td></td> <td></td> </tr> <tr class="t-dcl ">
<td >OutputIterator partial_sum( InputIterator first, InputIterator last, OutputIterator d_first );
<td > (1) </td> <td class="t-dcl-nopad"> </td> </tr> <tr class="t-dcl ">
<td >OutputIterator partial_sum( InputIterator first, InputIterator last, OutputIterator d_first,
<td > (2) </td> <td class="t-dcl-nopad"> </td> </tr> Template:ddcl list end
Computes the partial sums of the elements in the subranges of the range [first, last)
and writes them to the range beginning at d_first
. The first version uses operator+
to sum up the elements, the second version uses the given binary function op
.
Equivalent operation:
Contents |
Parameters
first, last | - | the range of elements to sum |
d_first | - | the beginning of the destination range |
op | - | binary operation function object that will be applied. The signature of the function should be equivalent to the following: Ret fun(const Type1 &a, const Type2 &b); The signature does not need to have const &. |
Return value
Iterator to the element past the last element written.
Complexity
Exactly (last - first) - 1
applications of the binary operation