Namespaces
Variants
Views
Actions

Difference between revisions of "c/numeric/math/erf"

From cppreference.com
< c‎ | numeric‎ | math
m (fmt)
m
Line 18: Line 18:
 
{{dcl end}}
 
{{dcl end}}
  
@1-3@ Computes the {{enwiki}Error function|error function}} of {{tt|arg}}.
+
@1-3@ Computes the {{enwiki|Error function|error function}} of {{tt|arg}}.
 
@4@ Type-generic macro: If {{tt|arg}} has type {{c|long double}}, {{tt|erfl}} is called. Otherwise, if {{tt|arg}} has integer type or the type {{c|double}}, {{tt|erf}} is called. Otherwise, {{tt|erff}} is called.
 
@4@ Type-generic macro: If {{tt|arg}} has type {{c|long double}}, {{tt|erfl}} is called. Otherwise, if {{tt|arg}} has integer type or the type {{c|double}}, {{tt|erf}} is called. Otherwise, {{tt|erff}} is called.
  

Revision as of 22:11, 7 November 2023

 
 
 
Common mathematical functions
Types
(C99)(C99)    

(C99)(C99)    

Functions
Basic operations
(C99)
(C99)
(C99)
(C99)(C99)(C99)(C23)
Maximum/minimum operations
(C99)
(C23)    
Exponential functions
(C23)
(C99)
(C99)
(C23)
(C23)
(C99)
(C99)(C23)
(C23)
(C23)
Power functions
(C99)
(C23)
(C23)
(C99)
(C23)
(C23)
Trigonometric and hyperbolic functions
(C23)
(C23)
(C23)
(C23)
(C99)
(C99)
(C99)
Error and gamma functions
erf
(C99)
(C99)
(C99)
(C99)
Nearest integer floating-point operations
(C99)(C99)(C99)
(C99)
(C99)(C99)(C99)
(C23)(C23)(C23)(C23)
Floating-point manipulation functions
(C99)(C99)
(C99)(C23)
(C99)
Narrowing operations
(C23)
(C23)
(C23)
(C23)
(C23)
(C23)
Quantum and quantum exponent functions
Decimal re-encoding functions
Total order and payload functions
Classification
(C99)
(C99)
(C99)
(C23)
Macro constants
Special floating-point values
(C99)(C23)
Arguments and return values
(C99)(C99)(C99)(C99)(C99)    
Error handling
(C99)    

 
Defined in header <math.h>
float       erff( float arg );
(1) (since C99)
double      erf( double arg );
(2) (since C99)
long double erfl( long double arg );
(3) (since C99)
Defined in header <tgmath.h>
#define erf( arg )
(4) (since C99)
1-3) Computes the error function of arg.
4) Type-generic macro: If arg has type long double, erfl is called. Otherwise, if arg has integer type or the type double, erf is called. Otherwise, erff is called.

Contents

Parameters

arg - floating point value

Return value

If no errors occur, value of the error function of arg, that is
2
π
arg0e-t2dt
, is returned. If a range error occurs due to underflow, the correct result (after rounding), that is
2*arg
π
, is returned.

Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If the argument is ±0, ±0 is returned
  • If the argument is ±∞, ±1 is returned
  • If the argument is NaN, NaN is returned

Notes

Underflow is guaranteed if |arg| < DBL_MIN*(sqrt(π)/2).

erf(
x
σ2
)
is the probability that a measurement whose errors are subject to a normal distribution with standard deviation σ is less than x away from the mean value.

Example

#include <math.h>
#include <stdio.h>
 
double phi(double x1, double x2)
{
    return (erf(x2 / sqrt(2)) - erf(x1 / sqrt(2))) / 2;
}
 
int main(void)
{
    puts("normal variate probabilities:");
    for (int n = -4; n < 4; ++n)
        printf("[%2d:%2d]: %5.2f%%\n", n, n + 1, 100 * phi(n, n + 1));
 
    puts("special values:");
    printf("erf(-0) = %f\n", erf(-0.0));
    printf("erf(Inf) = %f\n", erf(INFINITY));
}

Output:

normal variate probabilities:
[-4:-3]:  0.13%
[-3:-2]:  2.14%
[-2:-1]: 13.59%
[-1: 0]: 34.13%
[ 0: 1]: 34.13%
[ 1: 2]: 13.59%
[ 2: 3]:  2.14%
[ 3: 4]:  0.13%
special values:
erf(-0) = -0.000000
erf(Inf) = 1.000000

References

  • C11 standard (ISO/IEC 9899:2011):
  • 7.12.8.1 The erf functions (p: 249)
  • 7.25 Type-generic math <tgmath.h> (p: 373-375)
  • F.10.5.1 The erf functions (p: 525)
  • C99 standard (ISO/IEC 9899:1999):
  • 7.12.8.1 The erf functions (p: 230)
  • 7.22 Type-generic math <tgmath.h> (p: 335-337)
  • F.9.5.1 The erf functions (p: 462)

See also

(C99)(C99)(C99)
computes complementary error function
(function) [edit]

External links

Weisstein, Eric W. "Erf." From MathWorld — A Wolfram Web Resource.