Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/algorithm/accumulate"

From cppreference.com
< cpp‎ | algorithm
(restrictions on the functor: we only had them in std::transform, but they are for 5 functions (LWG 242 was the C++11 change))
(Added example where Type1 and Type2 are different.)
Line 98: Line 98:
 
sssssbbbbb
 
sssssbbbbb
 
}}
 
}}
 +
 +
 +
{{example
 +
|
 +
| code=
 +
#include <iostream>
 +
#include <vector>
 +
#include <string>
 +
 +
auto main(int, char **) -> int
 +
{
 +
    auto v = std::vector<int> {3, 4, 5, 6, 7, 8};
 +
    auto s = std::accumulate(v.cbegin()+1, v.cend(), std::to_string(v[0]),
 +
              [] (std::string a, int b) { return a + "-" + std::to_string(b); } );
 +
    std::cout << s << "\n";
 +
}
 +
| output=
 +
3-4-5-6-7-8
 +
}}
 +
 +
  
 
===See also===
 
===See also===

Revision as of 04:34, 6 March 2015

 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
accumulate
(C++17)
Operations on uninitialized memory
 
Defined in header <numeric>
template< class InputIt, class T >
T accumulate( InputIt first, InputIt last, T init );
(1)
template< class InputIt, class T, class BinaryOperation >

T accumulate( InputIt first, InputIt last, T init,

              BinaryOperation op );
(2)

Computes the sum of the given value init and the elements in the range [first, last). The first version uses operator+ to sum up the elements, the second version uses the given binary function op.

op must not have side effects.

(until C++11)

op must not invalidate any iterators, including the end iterators, or modify any elements of the range involved.

(since C++11)

Contents

Parameters

first, last - the range of elements to sum
init - initial value of the sum
op - binary operation function object that will be applied.

The signature of the function should be equivalent to the following:

 Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const &.
The type  Type1 must be such that an object of type T can be implicitly converted to  Type1. The type  Type2 must be such that an object of type InputIt can be dereferenced and then implicitly converted to  Type2. The type Ret must be such that an object of type T can be assigned a value of type Ret. ​

Type requirements

Template:par req concept Template:par req concept

Return value

The sum of the given value and elements in the given range.

Possible implementation

First version
template<class InputIt, class T>
T accumulate(InputIt first, InputIt last, T init)
{
    for (; first != last; ++first) {
        init = init + *first;
    }
    return init;
}
Second version
template<class InputIt, class T, class BinaryOperation>
T accumulate(InputIt first, InputIt last, T init, 
             BinaryOperation op)
{
    for (; first != last; ++first) {
        init = op(init, *first);
    }
    return init;
}

Example

#include <iostream>
#include <vector>
#include <numeric>
#include <string>
 
int multiply(int x, int y)
{
    return x*y;
}
 
std::string magic_function(std::string res, int x)
{
    return res += (x > 5) ? "b" : "s";
}
 
int main()
{
    std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 
    int sum = std::accumulate(v.begin(), v.end(), 0);
    int product = std::accumulate(v.begin(), v.end(), 1, multiply);
    std::string magic = std::accumulate(v.begin(), v.end(), std::string(), 
                                        magic_function);
 
    std::cout << sum << '\n'
              << product << '\n'
              << magic << '\n';
}

Output:

55
3628800
sssssbbbbb


#include <iostream>
#include <vector>
#include <string>
 
auto main(int, char **) -> int
{
    auto v = std::vector<int> {3, 4, 5, 6, 7, 8};
    auto s = std::accumulate(v.cbegin()+1, v.cend(), std::to_string(v[0]), 
               [] (std::string a, int b) { return a + "-" + std::to_string(b); } );
    std::cout << s << "\n";
}

Output:

3-4-5-6-7-8


See also

computes the differences between adjacent elements in a range
(function template) [edit]
computes the inner product of two ranges of elements
(function template) [edit]
computes the partial sum of a range of elements
(function template) [edit]