Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/ratio/ratio subtract"

From cppreference.com
< cpp‎ | numeric‎ | ratio
m (Shorten template names. Use {{lc}} where appropriate.)
(Fix wording)
Line 5: Line 5:
 
{{dcl | 1=
 
{{dcl | 1=
 
template< class R1, class R2 >
 
template< class R1, class R2 >
using ratio_subtract = /* unspecified */;
+
using ratio_subtract = /* see below */;
 
}}
 
}}
 
{{dcl end}}
 
{{dcl end}}
  
The template alias {{tt|std::ratio_subtract}} denotes the result of subtracting two exact rational fractions represented by the {{lc|std::ratio}} instances {{tt|R1}} and {{tt|R2}}. The result a {{lc|std::ratio}} instance {{tt|std::ratio<Num, Denom>}} where {{c|1=Num == R1::num * R2::den - R2::num * R1::den}} and {{c|1=Denom == R1::den * R2::den}}.
+
The alias template {{tt|std::ratio_subtract}} denotes the result of subtracting two exact rational fractions represented by the {{lc|std::ratio}} specializations {{tt|R1}} and {{tt|R2}}.
  
===Member types===
+
The result is a {{lc|std::ratio}} specialization {{c|std::ratio<U, V>}}, such that given {{c|1=Num == R1::num * R2::den - R2::num * R1::den}} and {{c|1=Denom == R1::den * R2::den}} (computed without arithmetic overflow), {{tt|U}} is {{c|std::ratio<Num, Denom>::num}} and {{tt|V}} is {{c|std::ratio<Num, Denom>::den}}.
{{dsc begin}}
+
{{dsc hitem | Member type | Definition}}
+
{{dsc | {{tt|type}} | {{c|std::ratio<num, den>}}}}
+
{{dsc end}}
+
  
===Member constants===
+
===Notes===
{{dsc begin}}
+
If {{tt|U}} or {{tt|V}} is not representable in {{tt|std::intmax_t}}, the program is ill-formed. If {{tt|Num}} or {{tt|Denom}} is not representable in {{tt|std::intmax_t}}, the program is ill-formed unless the implementation yields correct values for {{tt|U}} and {{tt|V}}.
{{dsc mem sconst | nolink=true | num | {{c|constexpr}} value of type {{lc|std::intmax_t}} equal to {{tt|sign(Num) * sign(Denom) * abs(Num) / gcd(Num, Denom)}} }}
+
 
{{dsc mem sconst | nolink=true | den | {{c|constexpr}} value of type {{lc|std::intmax_t}} equal to {{tt|abs(Denom) / gcd(Num, Denom)}} }}
+
The above definition requires that the result of {{c|std::ratio_subtract<R1, R2>}} be already reduced to lowest terms; for example, {{c|std::ratio_subtract<std::ratio<1, 2>, std::ratio<1, 6>>}} is the same type as {{c|std::ratio<1, 3>}}.
{{dsc end}}
+
  
 
===Example===
 
===Example===

Revision as of 15:22, 23 May 2015

 
 
Metaprogramming library
Type traits
Type categories
(C++11)
(C++14)  
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Type properties
(C++11)
(C++11)
(C++14)
(C++11)
(C++11)(until C++20*)
(C++11)(deprecated in C++20)
(C++11)
Type trait constants
Metafunctions
(C++17)
Supported operations
Relationships and property queries
Type modifications
(C++11)(C++11)(C++11)
Type transformations
(C++11)(deprecated in C++23)
(C++11)(deprecated in C++23)
(C++11)
(C++11)
(C++17)

(C++11)(until C++20*)(C++17)
Compile-time rational arithmetic
Compile-time integer sequences
 
Compile time rational arithmetic
(C++11)
Arithmetic
(C++11)
ratio_subtract
(C++11)
Comparison
(C++11)
 
Defined in header <ratio>
template< class R1, class R2 >
using ratio_subtract = /* see below */;

The alias template std::ratio_subtract denotes the result of subtracting two exact rational fractions represented by the std::ratio specializations R1 and R2.

The result is a std::ratio specialization std::ratio<U, V>, such that given Num == R1::num * R2::den - R2::num * R1::den and Denom == R1::den * R2::den (computed without arithmetic overflow), U is std::ratio<Num, Denom>::num and V is std::ratio<Num, Denom>::den.

Notes

If U or V is not representable in std::intmax_t, the program is ill-formed. If Num or Denom is not representable in std::intmax_t, the program is ill-formed unless the implementation yields correct values for U and V.

The above definition requires that the result of std::ratio_subtract<R1, R2> be already reduced to lowest terms; for example, std::ratio_subtract<std::ratio<1, 2>, std::ratio<1, 6>> is the same type as std::ratio<1, 3>.

Example

#include <iostream>
#include <ratio>
 
int main()
{
    typedef std::ratio<2, 3> two_third;
    typedef std::ratio<1, 6> one_sixth;
 
    typedef std::ratio_subtract<two_third, one_sixth> diff;
    std::cout << "2/3 - 1/6 = " << diff::num << '/' << diff::den << '\n';
}

Output:

2/3 - 1/6 = 1/2