Copy elision
Omits copy and move(since C++11) constructors, resulting in zero-copy pass-by-value semantics.
When an object is initialized from a prvalue of the same type (ignoring cv-qualification), it's initialized directly from the initializer. No temporary is created, and no copy or move is made. This is sometimes called "guaranteed copy elision", though unlike copy elision, it's mandatory and is not merely an optimization. |
(since C++17) |
Contents |
Explanation
Under the following circumstances, the compilers are permitted, but not required to omit the copy and move(since C++11) construction of class objects even if the copy/move(since C++11) constructor and the destructor have observable side-effects. The objects are constructed directly into the storage where they would otherwise be copied/moved to. This is an optimization: even when it takes place and the copy/move(since C++11) constructor is not called, it still must be present and accessible (as if no optimization happened at all), otherwise the program is ill-formed:
- In a return statement, when the operand is the name of a non-volatile object with automatic storage duration, which isn't a function parameter or a catch clause parameter, and which is of the same class type (ignoring cv-qualification) as the function return type. This variant of copy elision is known as NRVO, "named return value optimization".
|
(until C++17) |
Please note that since C++17, the above optimization becomes mandatory and is no longer considered as an optimization anymore. The object is initialized directly from a prvalue. No temporary exists and no copy/move operation takes place, even conceptually. Another way to describe C++17 mechanics is "unmaterialized value passing": prvalues are returned and used without ever materializing a temporary. T f() { return T(); } f(); // only one call to default constructor of T T x = T(T(f())); // only one call to default constructor of T, to initialize x |
(since C++17) |
|
(since C++11) |
|
(since C++20) |
When copy elision occurs, the implementation treats the source and target of the omitted copy/move(since C++11) operation as simply two different ways of referring to the same object, and the destruction of that object occurs at the later of the times when the two objects would have been destroyed without the optimization (except that, if the parameter of the selected constructor is an rvalue reference to object type, the destruction occurs when the target would have been destroyed)(since C++17).
Multiple copy elisions may be chained to eliminate multiple copies.
struct A { void *p; constexpr A(): p(this) {} }; constexpr A g() { A a; return a; } constexpr A a; // a.p points to a // constexpr A b = g(); // error: b.p would be dangling and would point to a temporary // with automatic storage duration void g() { A c = g(); // c.p may point to c or to an ephemeral temporary } extern const A d; constexpr A f() { A e; if (&e == &d) return A(); else return e; // mandating NRVO in constant evaluation contexts would result in contradiction // that NRVO is performed if and only if it's not performed } // constexpr A d = f(); // error: d.p would be dangling |
(since C++14) |
Notes
Copy elision is the only allowed form of optimization(until C++14)one of the two allowed forms of optimization, alongside allocation elision and extension,(since C++14) that can change the observable side-effects. Because some compilers do not perform copy elision in every situation where it is allowed (e.g., in debug mode), programs that rely on the side-effects of copy/move constructors and destructors are not portable.
In a return statement or a throw-expression, if the compiler cannot perform copy elision but the conditions for copy elision are met or would be met, except that the source is a function parameter, the compiler will attempt to use the move constructor even if the object is designated by an lvalue; see return statement for details. |
(since C++11) |
Example
#include <iostream> #include <vector> struct Noisy { Noisy() { std::cout << "constructed\n"; } Noisy(const Noisy&) { std::cout << "copy-constructed\n"; } Noisy(Noisy&&) { std::cout << "move-constructed\n"; } ~Noisy() { std::cout << "destructed\n"; } }; std::vector<Noisy> f() { std::vector<Noisy> v = std::vector<Noisy>(3); // copy elision when initializing v // from a temporary (until C++17) // from a prvalue (since C++17) return v; // NRVO from v to the result object (not guaranteed, even in C++17) } // if optimization is disabled, the move constructor is called void g(std::vector<Noisy> arg) { std::cout << "arg.size() = " << arg.size() << '\n'; } int main() { std::vector<Noisy> v = f(); // copy elision in initialization of v // from the temporary returned by f() (until C++17) // from the prvalue f() (since C++17) g(f()); // copy elision in initialization of the parameter of g() // from the temporary returned by f() (until C++17) // from the prvalue f() (since C++17) }
Possible output:
constructed constructed constructed constructed constructed constructed arg.size() = 3 destructed destructed destructed destructed destructed destructed
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
CWG 2022 | C++14 | copy elision was optional in constant expressions | copy elision mandatory |
CWG 2278 | C++14 | NRVO was mandatory in constant expressions | forbid NRVO in constant expressions |