std::is_aggregate
From cppreference.com
Defined in header <type_traits>
|
||
template< class T > struct is_aggregate; |
(since C++17) | |
std::is_aggregate
is a UnaryTypeTrait.
Checks if T
is an aggregate type. The member constant value
is equal to true if T
is an aggregate type and false otherwise.
The behavior is undefined if T is an incomplete type other than an array type or (possibly cv-qualified) void.
If the program adds specializations for std::is_aggregate
or std::is_aggregate_v
, the behavior is undefined.
Contents |
Template parameters
T | - | a type to check |
Helper variable template
template< class T > constexpr bool is_aggregate_v = is_aggregate<T>::value; |
(since C++17) | |
Inherited from std::integral_constant
Member constants
value [static] |
true if T is an aggregate type, false otherwise (public static member constant) |
Member functions
operator bool |
converts the object to bool, returns value (public member function) |
operator() (C++14) |
returns value (public member function) |
Member types
Type | Definition |
value_type
|
bool |
type
|
std::integral_constant<bool, value> |
Notes
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_is_aggregate |
201703L | (C++17) | std::is_agregate
|
Example
Run this code
#include <new> #include <type_traits> #include <utility> // constructs a T at the uninitialized memory pointed to by p using // list-initialization for aggregates and non-list initialization otherwise template<class T, class... Args> T* construct(T* p, Args&&... args) { if constexpr(std::is_aggregate_v<T>) return ::new (static_cast<void*>(p)) T{std::forward<Args>(args)...}; else return ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...); } struct A { int x, y; }; struct B { B(int, const char*) { } }; int main() { std::aligned_union_t<1, A, B> storage; [[maybe_unused]] A* a = construct(reinterpret_cast<A*>(&storage), 1, 2); [[maybe_unused]] B* b = construct(reinterpret_cast<B*>(&storage), 1, "hello"); }
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 3823 | C++17 | The behavior is undefined if T is an array type butstd::remove_all_extents_t<T> is an incomplete type.
|
The behavior is defined regardless of the incompleteness of std::remove_all_extents_t<T> as long as T is an array type.
|