std::lexicographical_compare
Template:cpp/algorithm/sidebar Template:ddcl list begin <tr class="t-dsc-header">
<td><algorithm>
<td></td> <td></td> </tr> <tr class="t-dcl ">
<td >bool lexicographical_compare( InputIterator1 first1, InputIterator1 last1,
<td > (1) </td> <td class="t-dcl-nopad"> </td> </tr> <tr class="t-dcl ">
<td >bool lexicographical_compare( InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
<td > (2) </td> <td class="t-dcl-nopad"> </td> </tr> Template:ddcl list end
Checks if the first range [first1, last1) is lexicographically less than the second range [first2, last2). The first version uses operator< to compare the elements, the second version uses the given comparison function comp
.
Lexicographical comparison is a operation with the following properties:
- Two ranges are compared element by element.
- The first mismatching element defines which range is lexicographically less or greater than the other.
- If one range is a prefix of another, the shorter range is lexicographically less than the other.
- If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically equal.
- An empty range is lexicographically less than any non-empty range.
- Two empty ranges are lexicographically equal.
Contents |
Parameters
first1, last1 | - | the first range of elements to examine |
first2, last2 | - | the second range of elements to examine |
comp | - | comparison function object (i.e. an object that satisfies the requirements of Compare) which returns true if the first argument is less than the second. The signature of the comparison function should be equivalent to the following: bool cmp(const Type1& a, const Type2& b); While the signature does not need to have const&, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) |
Return value
true if the first range is lexicographically less than the second.
Complexity
At most 2·min(N1, N2) applications of the comparison operation, where N1 = std::distance(first1, last1) and N2 = std::distance(first2, last2).
Possible implementation
Example
This section is incomplete Reason: no example |