std::hypot
Template:ddcl list begin <tr class="t-dsc-header">
<td><cmath>
<td></td> <td></td> </tr> <tr class="t-dcl ">
<td ><td > (1) </td> <td > (since C++11) </td> </tr> <tr class="t-dcl ">
<td ><td > (2) </td> <td > (since C++11) </td> </tr> <tr class="t-dcl ">
<td ><td > (3) </td> <td > (since C++11) </td> </tr> <tr class="t-dcl ">
<td ><td > (4) </td> <td > (since C++11) </td> </tr> Template:ddcl list end
Computes the square root of the sum of the squares of x
and y
, without undue overflow or underflow at intermediate stages of the computation. This is the length of the hypotenuse of a right-angled triangle with sides of length x
and y
, or the distance of the point (x,y)
from the origin (0,0)
, or the magnitude of a complex number x+iy
4) If any argument has integral type, it is cast to double. If any other argument is long double, then the return type is long double, otherwise it is double.
Contents |
Parameters
x | - | floating point value |
y | - | floating point value |
Return value
The hypotenuse of a right-angled triangle, √x2+y2.
Exceptions
If the result overflows, a range error may occur and FE_OVERFLOW may be raised.
If the result is subnormal, an underflow error may occur and FE_UNDERFLOW may be raised.
Notes
Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD, Open64
Example
#include <cmath> #include <utility> #include <iostream> std::pair<double, double> cartesian_to_polar(double x, double y) { return {std::hypot(x, y), std::atan2(y,x)}; } int main() { std::pair<double, double> polar = cartesian_to_polar(1, 1); std::cout << "(1,1) cartesian is (" << polar.first << "," << polar.second<< ") polar\n"; }
Output:
(1,1) cartesian is (1.41421,0.785398) polar