std::result_of
From cppreference.com
Defined in header <type_traits>
|
||
template< class > class result_of; //not defined |
(1) | (since C++11) |
template< class F, class... ArgTypes > class result_of<F(ArgTypes...)>; |
(2) | (since C++11) |
Deduces the return type of a function call expression at compile time.
F must be a callable type, reference to function, or reference to callable type. Invoking F with ArgTypes... must be a well-formed expression |
(since C++11) |
F and all types in ArgTypes can be any complete type, array of unknown bound, or (cv-qualified) void |
(since C++14) |
Contents |
Member types
Member type | Definition |
type
|
the return type of the Template:concept type F if invoked with the arguments ArgTypes... . Only defined if F can be called with the arguments ArgTypes... in unevaluated context.(since C++14)
|
Helper types
template< class T > using result_of_t = typename result_of<T>::type; |
(since C++14) | |
Possible implementation
template <class> struct result_of; namespace detail { template <class F, class... Args> inline auto INVOKE(F&& f, Args&&... args) -> decltype(forward<F>(f)(forward<Args>(args)...)) { return forward<F>(f)(forward<Args>(args)...); } template <class Base, class T, class Derived> inline auto INVOKE(T Base::*&& pmd, Derived&& ref) -> decltype(forward<Derived>(ref).*pmd) { return forward<Derived>(ref).*pmd; } template <class PMD, class Pointer> inline auto INVOKE(PMD&& pmd, Pointer&& ptr) -> decltype((*forward<Pointer>(ptr)).*forward<PMD>(pmd)) { return (*forward<Pointer>(ptr)).*forward<PMD>(pmd); } template <class Base, class T, class Derived, class... Args> inline auto INVOKE(T Base::*&& pmf, Derived&& ref, Args&&... args) -> decltype((forward<Derived>(ref).*pmf)(forward<Args>(args)...)) { return (forward<Derived>(ref).*pmf)(forward<Args>(args)...); } template <class PMF, class Pointer, class... Args> inline auto INVOKE(PMF&& pmf, Pointer&& ptr, Args&&... args) -> decltype(((*forward<Pointer>(ptr)).*forward<PMF>(pmf))(forward<Args>(args)...)) { return ((*forward<Pointer>(ptr)).*forward<PMF>(pmf))(forward<Args>(args)...); } } // namespace detail // C++11 implementation: template <class F, class... ArgTypes> struct result_of<F(ArgTypes...)> { using type = decltype(detail::INVOKE( declval<F>(), declval<ArgTypes>()... )); }; // C++14 implementation: namespace detail { template <class F, class... ArgTypes> struct invokeable { template <typename U = F> static auto test(int) -> decltype(INVOKE( declval<U>(), declval<ArgTypes>()... ), void(), true_type()); static auto test(...) -> false_type; static constexpr bool value = decltype(test(0))::value; }; template <bool B, class F, class... ArgTypes> struct _result_of { using type = decltype(INVOKE( declval<F>(), declval<ArgTypes>()... )); }; template <class F, class... ArgTypes> struct _result_of<false, F, ArgTypes...> { }; } // namespace detail template <class F, class... ArgTypes> struct result_of<F(ArgTypes...)> : detail::_result_of<detail::invokeable<F, ArgTypes...>::value, F, ArgTypes...> { };
Notes
As formulated in C++11, std::result_of
would fail to compile when F(ArgTypes...) is ill-formed (e.g. when F is not a callable type at all). C++14 changes that to a SFINAE (when F is not callable, std::result_of<F(Args...)>
simply doesn't have the type
member).
Examples
std::result_of
can be used to determine the result of invoking a functor, in particular if the result type is different for different sets of arguments:
Run this code
#include <type_traits> struct S { double operator()(char, int&); float operator()(int); }; struct C { double Func(char, int&); }; int main() { // the result of invoking S with char and int& arguments is double std::result_of<S(char, int&)>::type f = 3.14; // f has type double static_assert(std::is_same<decltype(f), double>::value, ""); // the result of invoking S with int argument is float std::result_of<S(int)>::type d = 3.14; // f has type float static_assert(std::is_same<decltype(d), float>::value, ""); // result_of can be used with a pointer to member function as follows std::result_of<decltype(&C::Func)(C, char, int&)>::type g = 3.14; static_assert(std::is_same<decltype(g), double>::value, ""); }
This program takes advantage of the C++14 changes to overload two functions on the "callability" of a template parameter:
Run this code
#include <type_traits> #include <iostream> template<class T> typename std::result_of<T(int)>::type f(T& t) { std::cout << "overload of f for callable T\n"; return t(0); } template<class T, class U> int f(U u) { std::cout << "overload of f for non-callable T\n"; return u; } struct S {}; int main() { f<S>(1); // fails to compile in C++11, calls the non-callable overload in C++14 }
Output:
overload of f for non-callable T
See also
(C++11) |
obtains a reference to an object of the template type argument for use in an unevaluated context (function template) |