std::experimental::propagate_const
Defined in header <experimental/propagate_const>
|
||
template<class T> class propagate_const; |
(library fundamentals TS v2) | |
std::experimental::propagate_const
is a const-propagating wrapper for pointers and pointer-like objects. It treats the wrapped pointer as a pointer to const
when accessed through a const
access path, hence the name.
The class satisfies the requirements of Template:concept and Template:concept if the underlying pointer-like type satisfies the corresponding concept, but propagate_const
is neither Template:concept nor Template:concept.
Type requirements | ||
-T must be an object pointer type or a pointer-like class type, as specified below. The program is ill-formed if T is an array type, reference type, pointer to function type, pointer to (possibly cv-qualified) void , or if decltype(*std::declval<T&>()) is not an lvalue reference type.
|
Contents |
Requirements on pointer-like class types
If T
is a class type, it must satisfy the requirements in this subsection.
Given
-
t
, a modifiable lvalue expression of typeT
-
ct
, aconst T&
bound toT
-
element_type
, an object type
The following expressions must be valid and have their specified effects:
Expression | Return type | Pre-conditions | Operational semantics |
---|---|---|---|
t.get() | element_type*
|
||
ct.get() | element_type* or const element_type*
|
t.get() == ct.get() | |
*t | element_type&
|
t.get() |= nullptr | *t refers to the same object as *(t.get())
|
*ct | element_type& or const element_type&
|
ct.get() |= nullptr | *ct refers to the same object as *(ct.get())
|
t.operator->() | element_type*
|
t.get() |= nullptr | t.operator->() == t.get() |
ct.operator->() | element_type* or const element_type*
|
ct.get() |= nullptr | ct.operator->() == ct.get() |
(bool)t | bool
|
(bool)t is equivalent to t.get() != nullptr | |
(bool)ct | bool
|
(bool)ct is equivalent to ct.get() != nullptr |
Further, T
and const T
shall be contextually convertible to bool
.
In addition, if T
is implicitly convertible to element_type*
, then (element_type*)t
shall be equal to t.get()
. Similarly, if const T
is implicitly convertible to const element_type*
, then (const element_type*)ct
shall be equal to ct.get()
.
Member types
Member type | Definition |
element_type | std::remove_reference_t<decltype(*std::declval<T&>())>, the type of the object pointed to by T
|
Member functions
constructs a new propagate_const (public member function) | |
(destructor) (implicitly declared) |
destructs a propagate_const , destroying the contained pointer (public member function) |
assigns the propagate_const object (public member function) | |
Modifiers | |
swaps the wrapped pointer (public member function) | |
Observers | |
returns a pointer to the object pointed to by the wrapped pointer (public member function) | |
checks if the wrapped pointer is null (public member function) | |
dereferences the wrapped pointer (public member function) | |
implicit conversion function to pointer (public member function) |
Non-member functions
compares to another propagate_const , another pointer, or with nullptr (function template) | |
specializes the swap algorithm (function template) | |
retrieves a reference to the wrapped pointer-like object (function template) |
Helper classes
hash support for propagate_const (class template specialization) | |
specializations of the standard comparison function objects for propagate_const (class template specialization) |
Example
This section is incomplete Reason: no example |