std::ranges::upper_bound
Defined in header <algorithm>
|
||
Call signature |
||
(1) | ||
template< std::forward_iterator I, std::sentinel_for<I> S, class T, class Proj = std::identity, |
(since C++20) (until C++26) |
|
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(since C++26) | |
(2) | ||
template< ranges::forward_range R, class T, class Proj = std::identity, |
(since C++20) (until C++26) |
|
template< ranges::forward_range R, class Proj = std::identity, |
(since C++26) | |
[
first,
last)
that is greater than value, or last if no such element is found.
The range [
first,
last)
must be partitioned with respect to the expression or !comp(value, element), i.e., all elements for which the expression is true must precede all elements for which the expression is false. A fully-sorted range meets this criterion.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Contents |
Parameters
first, last | - | iterator-sentinel defining the partially-ordered range to examine |
r | - | the partially-ordered range to examine |
value | - | value to compare the elements to |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
Iterator pointing to the first element that is greater than value, or last if no such element is found.
Complexity
The number of comparisons and applications of the projection performed are logarithmic in the distance between first and last (at most log2(last - first) + O(1) comparisons and applications of the projection). However, for an iterator that does not model random_access_iterator
, the number of iterator increments is linear.
Possible implementation
struct upper_bound_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<I, Proj>, std::indirect_strict_weak_order <const T*, std::projected<I, Proj>> Comp = ranges::less> constexpr I operator()(I first, S last, const T& value, Comp comp = {}, Proj proj = {}) const { I it; std::iter_difference_t<I> count, step; count = ranges::distance(first, last); while (count > 0) { it = first; step = count / 2; ranges::advance(it, step, last); if (!comp(value, std::invoke(proj, *it))) { first = ++it; count -= step + 1; } else count = step; } return first; } template<ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<ranges::iterator_t<R>, Proj>, std::indirect_strict_weak_order <const T*, std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less> constexpr ranges::borrowed_iterator_t<R> operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(comp), std::ref(proj)); } }; inline constexpr upper_bound_fn upper_bound; |
Notes
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_algorithm_default_value_type |
202403 | (C++26) | List-initialization for algorithms (1,2) |
Example
#include <algorithm> #include <cassert> #include <complex> #include <iostream> #include <iterator> #include <vector> int main() { namespace ranges = std::ranges; std::vector<int> data{1, 1, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6}; { auto lower = ranges::lower_bound(data.begin(), data.end(), 4); auto upper = ranges::upper_bound(data.begin(), data.end(), 4); ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " ")); std::cout << '\n'; } { auto lower = ranges::lower_bound(data, 3); auto upper = ranges::upper_bound(data, 3); ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " ")); std::cout << '\n'; } using CD = std::complex<double>; std::vector<CD> nums{{1, 0}, {2, 2}, {2, 1}, {3, 0}, {3, 1}}; auto cmpz = [](CD x, CD y) { return x.real() < y.real(); }; #ifdef __cpp_lib_algorithm_default_value_type auto it = ranges::upper_bound(nums, {2, 0}, cmpz); #else auto it = ranges::upper_bound(nums, CD{2, 0}, cmpz); #endif assert((*it == CD{3, 0})); }
Output:
4 4 4 3 3 3 3
See also
(C++20) |
returns range of elements matching a specific key (niebloid) |
(C++20) |
returns an iterator to the first element not less than the given value (niebloid) |
(C++20) |
divides a range of elements into two groups (niebloid) |
returns an iterator to the first element greater than a certain value (function template) |