Namespaces
Variants
Views
Actions

std::indirect_equivalence_relation

From cppreference.com
< cpp‎ | iterator
 
 
Iterator library
Iterator concepts
Iterator primitives
Algorithm concepts and utilities
Indirect callable concepts
indirect_equivalence_relation
(C++20)
Common algorithm requirements
(C++20)
(C++20)
(C++20)
Utilities
(C++20)
Iterator adaptors
Range access
(C++11)(C++14)
(C++14)(C++14)  
(C++11)(C++14)
(C++14)(C++14)  
(C++17)(C++20)
(C++17)
(C++17)
 
Defined in header <iterator>
template< class F, class I1, class I2 = I1 >

concept indirect_equivalence_relation =
    std::indirectly_readable<I1> &&
    std::indirectly_readable<I2> &&
    std::copy_constructible<F> &&
    std::equivalence_relation
        <F&, /*indirect-value-t*/<I1>, /*indirect-value-t*/<I2>> &&
    std::equivalence_relation
        <F&, /*indirect-value-t*/<I1>, std::iter_reference_t<I2>> &&
    std::equivalence_relation
        <F&, std::iter_reference_t<I1>, /*indirect-value-t*/<I2>> &&
    std::equivalence_relation

        <F&, std::iter_reference_t<I1>, std::iter_reference_t<I2>>;
(since C++20)

The concept indirect_equivalence_relation specifies requirements for algorithms that call equivalence relations as their arguments. The key difference between this concept and std::equivalence_relation is that it is applied to the types that I1 and I2 references, rather than I1 and I2 themselves.

Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
P2609R3 C++20 some requirements were defined in terms of std::iter_value_t<I>&
which mishandled projections resulting in incompatibility with equivalence relation F&
defined in terms of /*indirect-value-t*/<I>
to correctly handle such projections
P2997R1 C++20 indirect_equivalence_relation required F& to satisfy equivalence_relation with
std::iter_common_reference_t<I>
does not require