cacoshf, cacosh, cacoshl
Defined in header <complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header <tgmath.h>
|
||
#define acosh( z ) |
(4) | (since C99) |
z
with branch cut at values less than 1 along the real axis.z
has type long double complex, cacoshl
is called. if z
has type double complex, cacosh
is called, if z
has type float complex, cacoshf
is called. If z
is real or integer, then the macro invokes the corresponding real function (acoshf, acosh, acoshl). If z
is imaginary, then the macro invokes the corresponding complex number version and the return type is complex.Contents |
[edit] Parameters
z | - | complex argument |
[edit] Return value
The complex arc hyperbolic cosine of z
in the interval [0; ∞) along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- cacosh(conj(z)) == conj(cacosh(z))
- If
z
is±0+0i
, the result is+0+iπ/2
- If
z
is+x+∞i
(for any finite x), the result is+∞+iπ/2
- If
z
is+x+NaNi
(for non-zero finite x), the result isNaN+NaNi
and FE_INVALID may be raised. - If
z
is0+NaNi
, the result isNaN±iπ/2
, where the sign of the imaginary part is unspecified - If
z
is-∞+yi
(for any positive finite y), the result is+∞+iπ
- If
z
is+∞+yi
(for any positive finite y), the result is+∞+0i
- If
z
is-∞+∞i
, the result is+∞+3iπ/4
- If
z
is+∞+∞i
, the result is+∞+iπ/4
- If
z
is±∞+NaNi
, the result is+∞+NaNi
- If
z
isNaN+yi
(for any finite y), the result isNaN+NaNi
and FE_INVALID may be raised. - If
z
isNaN+∞i
, the result is+∞+NaNi
- If
z
isNaN+NaNi
, the result isNaN+NaNi
[edit] Notes
Although the C standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic cosine is acosh z = ln(z + √z+1 √z-1)
For any z, acosh(z) =√z-1 |
√1-z |
[edit] Example
#include <stdio.h> #include <complex.h> int main(void) { double complex z = cacosh(0.5); printf("cacosh(+0.5+0i) = %f%+fi\n", creal(z), cimag(z)); double complex z2 = conj(0.5); // or cacosh(CMPLX(0.5, -0.0)) in C11 printf("cacosh(+0.5-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2)); // in upper half-plane, acosh(z) = i*acos(z) double complex z3 = casinh(1+I); printf("casinh(1+1i) = %f%+fi\n", creal(z3), cimag(z3)); double complex z4 = I*casin(1+I); printf("I*asin(1+1i) = %f%+fi\n", creal(z4), cimag(z4)); }
Output:
cacosh(+0.5+0i) = 0.000000-1.047198i cacosh(+0.5-0i) (the other side of the cut) = 0.500000-0.000000i casinh(1+1i) = 1.061275+0.666239i I*asin(1+1i) = -1.061275+0.666239i
[edit] References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.6.1 The cacosh functions (p: 192)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- G.6.2.1 The cacosh functions (p: 539-540)
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
- 7.3.6.1 The cacosh functions (p: 174)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- G.6.2.1 The cacosh functions (p: 474-475)
- G.7 Type-generic math <tgmath.h> (p: 480)
[edit] See also
(C99)(C99)(C99) |
computes the complex arc cosine (function) |
(C99)(C99)(C99) |
computes the complex arc hyperbolic sine (function) |
(C99)(C99)(C99) |
computes the complex arc hyperbolic tangent (function) |
(C99)(C99)(C99) |
computes the complex hyperbolic cosine (function) |
(C99)(C99)(C99) |
computes inverse hyperbolic cosine (arcosh(x)) (function) |
C++ documentation for acosh
|