std::reduce
Defined in header <numeric>
|
||
template< class InputIt > typename std::iterator_traits<InputIt>::value_type |
(1) | (since C++17) (constexpr since C++20) |
template< class ExecutionPolicy, class ForwardIt > typename std::iterator_traits<ForwardIt>::value_type |
(2) | (since C++17) |
template< class InputIt, class T > T reduce( InputIt first, InputIt last, T init ); |
(3) | (since C++17) (constexpr since C++20) |
template< class ExecutionPolicy, class ForwardIt, class T > T reduce( ExecutionPolicy&& policy, |
(4) | (since C++17) |
template< class InputIt, class T, class BinaryOp > T reduce( InputIt first, InputIt last, T init, BinaryOp op ); |
(5) | (since C++17) (constexpr since C++20) |
template< class ExecutionPolicy, class ForwardIt, class T, class BinaryOp > |
(6) | (since C++17) |
[
first,
last)
, possibly permuted and aggregated in unspecified manner, along with the initial value init over op.
std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true. |
(until C++20) |
std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>> is true. |
(since C++20) |
Given binary_op as the actual binary operation:
- The result is non-deterministic if the binary_op is not associative or not commutative (such as floating-point addition).
- If any of the following values is not convertible to
T
, the program is ill-formed:
- binary_op(init, *first)
- binary_op(*first, init)
- binary_op(init, init)
- binary_op(*first, *first)
- If any of the following conditions is satisfied, the behavior is undefined:
-
T
is not MoveConstructible. - binary_op modifies any element of
[
first,
last)
. - binary_op invalidates any iterator or subrange of
[
first,
last]
.
-
Contents |
[edit] Parameters
first, last | - | the range of elements to apply the algorithm to |
init | - | the initial value of the generalized sum |
policy | - | the execution policy to use. See execution policy for details. |
op | - | binary FunctionObject that will be applied in unspecified order to the result of dereferencing the input iterators, the results of other op and init. |
Type requirements | ||
-InputIt must meet the requirements of LegacyInputIterator.
| ||
-ForwardIt must meet the requirements of LegacyForwardIterator.
|
[edit] Return value
[
first,
last)
over op.The generalized sum of a group of elements over an binary operation binary_op is defined as follows:
- If the group only has one element, the sum is the value of the element.
- Otherwise, performs the following operations in order:
- Takes any two elements elem1 and elem2 from the group.
- Calculates binary_op(elem1, elem2) and puts the result back to the group.
- Repeats steps 1 and 2 until there is only one element in the group.
[edit] Complexity
Given N as std::distance(first, last):
[edit] Exceptions
The overloads with a template parameter named ExecutionPolicy
report errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the standard policies, std::terminate is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory, std::bad_alloc is thrown.
[edit] Notes
std::reduce
behaves like std::accumulate except the elements of the range may be grouped and rearranged in arbitrary order.
[edit] Example
side-by-side comparison between std::reduce
and std::accumulate:
#if PARALLEL #include <execution> #define SEQ std::execution::seq, #define PAR std::execution::par, #else #define SEQ #define PAR #endif #include <chrono> #include <iomanip> #include <iostream> #include <numeric> #include <utility> #include <vector> int main() { std::cout.imbue(std::locale("en_US.UTF-8")); std::cout << std::fixed << std::setprecision(1); auto eval = [](auto fun) { const auto t1 = std::chrono::high_resolution_clock::now(); const auto [name, result] = fun(); const auto t2 = std::chrono::high_resolution_clock::now(); const std::chrono::duration<double, std::milli> ms = t2 - t1; std::cout << std::setw(28) << std::left << name << "sum: " << result << '\t' << "time: " << ms.count() << " ms\n"; }; { const std::vector<double> v(100'000'007, 0.1); eval([&v]{ return std::pair{"std::accumulate (double)", std::accumulate(v.cbegin(), v.cend(), 0.0)}; }); eval([&v]{ return std::pair{"std::reduce (seq, double)", std::reduce(SEQ v.cbegin(), v.cend())}; }); eval([&v]{ return std::pair{"std::reduce (par, double)", std::reduce(PAR v.cbegin(), v.cend())}; }); } { const std::vector<long> v(100'000'007, 1); eval([&v]{ return std::pair{"std::accumulate (long)", std::accumulate(v.cbegin(), v.cend(), 0l)}; }); eval([&v]{ return std::pair{"std::reduce (seq, long)", std::reduce(SEQ v.cbegin(), v.cend())}; }); eval([&v]{ return std::pair{"std::reduce (par, long)", std::reduce(PAR v.cbegin(), v.cend())}; }); } }
Possible output:
// POSIX: g++ -std=c++23 ./example.cpp -ltbb -O3; ./a.out std::accumulate (double) sum: 10,000,000.7 time: 356.9 ms std::reduce (seq, double) sum: 10,000,000.7 time: 140.1 ms std::reduce (par, double) sum: 10,000,000.7 time: 140.1 ms std::accumulate (long) sum: 100,000,007 time: 46.0 ms std::reduce (seq, long) sum: 100,000,007 time: 67.3 ms std::reduce (par, long) sum: 100,000,007 time: 63.3 ms // POSIX: g++ -std=c++23 ./example.cpp -ltbb -O3 -DPARALLEL; ./a.out std::accumulate (double) sum: 10,000,000.7 time: 353.4 ms std::reduce (seq, double) sum: 10,000,000.7 time: 140.7 ms std::reduce (par, double) sum: 10,000,000.7 time: 24.7 ms std::accumulate (long) sum: 100,000,007 time: 42.4 ms std::reduce (seq, long) sum: 100,000,007 time: 52.0 ms std::reduce (par, long) sum: 100,000,007 time: 23.1 ms
[edit] See also
sums up or folds a range of elements (function template) | |
applies a function to a range of elements, storing results in a destination range (function template) | |
(C++17) |
applies an invocable, then reduces out of order (function template) |
(C++23) |
left-folds a range of elements (niebloid) |