Standard library header <algorithm>
From cppreference.com
This header is part of the algorithm library.
Includes | |
(C++11) |
std::initializer_list class template |
Classes | |
Defined in namespace
std::ranges | |
Return types (C++20) | |
(C++20) |
provides a way to store an iterator and a function object as a single unit (class template) |
(C++20) |
provides a way to store two iterators as a single unit (class template) |
(C++20) |
provides a way to store two iterators as a single unit (class template) |
(C++20) |
provides a way to store three iterators as a single unit (class template) |
(C++20) |
provides a way to store three iterators as a single unit (class template) |
(C++20) |
provides a way to store two objects or references of the same type as a single unit (class template) |
(C++20) |
provides a way to store an iterator and a boolean flag as a single unit (class template) |
(C++23) |
provides a way to store an iterator and a value as a single unit (class template) |
(C++23) |
provides a way to store an iterator and a value as a single unit (class template) |
Functions | |
Non-modifying sequence operations | |
(C++11)(C++11)(C++11) |
checks if a predicate is true for all, any or none of the elements in a range (function template) |
applies a function to a range of elements (function template) | |
(C++17) |
applies a function object to the first N elements of a sequence (function template) |
returns the number of elements satisfying specific criteria (function template) | |
finds the first position where two ranges differ (function template) | |
(C++11) |
finds the first element satisfying specific criteria (function template) |
finds the last sequence of elements in a certain range (function template) | |
searches for any one of a set of elements (function template) | |
finds the first two adjacent items that are equal (or satisfy a given predicate) (function template) | |
searches for the first occurrence of a range of elements (function template) | |
searches for the first occurrence of a number consecutive copies of an element in a range (function template) | |
Modifying sequence operations | |
(C++11) |
copies a range of elements to a new location (function template) |
(C++11) |
copies a number of elements to a new location (function template) |
copies a range of elements in backwards order (function template) | |
(C++11) |
moves a range of elements to a new location (function template) |
(C++11) |
moves a range of elements to a new location in backwards order (function template) |
copy-assigns the given value to every element in a range (function template) | |
copy-assigns the given value to N elements in a range (function template) | |
applies a function to a range of elements, storing results in a destination range (function template) | |
assigns the results of successive function calls to every element in a range (function template) | |
assigns the results of successive function calls to N elements in a range (function template) | |
removes elements satisfying specific criteria (function template) | |
copies a range of elements omitting those that satisfy specific criteria (function template) | |
replaces all values satisfying specific criteria with another value (function template) | |
copies a range, replacing elements satisfying specific criteria with another value (function template) | |
swaps the values of two objects (function template) | |
swaps two ranges of elements (function template) | |
swaps the elements pointed to by two iterators (function template) | |
reverses the order of elements in a range (function template) | |
creates a copy of a range that is reversed (function template) | |
rotates the order of elements in a range (function template) | |
copies and rotate a range of elements (function template) | |
(C++20) |
shifts elements in a range (function template) |
(until C++17)(C++11) |
randomly re-orders elements in a range (function template) |
(C++17) |
selects N random elements from a sequence (function template) |
removes consecutive duplicate elements in a range (function template) | |
creates a copy of some range of elements that contains no consecutive duplicates (function template) | |
Partitioning operations | |
(C++11) |
determines if the range is partitioned by the given predicate (function template) |
divides a range of elements into two groups (function template) | |
(C++11) |
copies a range dividing the elements into two groups (function template) |
divides elements into two groups while preserving their relative order (function template) | |
(C++11) |
locates the partition point of a partitioned range (function template) |
Sorting operations | |
(C++11) |
checks whether a range is sorted into ascending order (function template) |
(C++11) |
finds the largest sorted subrange (function template) |
sorts a range into ascending order (function template) | |
sorts the first N elements of a range (function template) | |
copies and partially sorts a range of elements (function template) | |
sorts a range of elements while preserving order between equal elements (function template) | |
partially sorts the given range making sure that it is partitioned by the given element (function template) | |
Binary search operations (on sorted ranges) | |
returns an iterator to the first element not less than the given value (function template) | |
returns an iterator to the first element greater than a certain value (function template) | |
determines if an element exists in a partially-ordered range (function template) | |
returns range of elements matching a specific key (function template) | |
Other operations on sorted ranges | |
merges two sorted ranges (function template) | |
merges two ordered ranges in-place (function template) | |
Set operations (on sorted ranges) | |
returns true if one sequence is a subsequence of another (function template) | |
computes the difference between two sets (function template) | |
computes the intersection of two sets (function template) | |
computes the symmetric difference between two sets (function template) | |
computes the union of two sets (function template) | |
Heap operations | |
(C++11) |
checks if the given range is a max heap (function template) |
(C++11) |
finds the largest subrange that is a max heap (function template) |
creates a max heap out of a range of elements (function template) | |
adds an element to a max heap (function template) | |
removes the largest element from a max heap (function template) | |
turns a max heap into a range of elements sorted in ascending order (function template) | |
Minimum/maximum operations | |
returns the greater of the given values (function template) | |
returns the largest element in a range (function template) | |
returns the smaller of the given values (function template) | |
returns the smallest element in a range (function template) | |
(C++11) |
returns the smaller and larger of two elements (function template) |
(C++11) |
returns the smallest and the largest elements in a range (function template) |
(C++17) |
clamps a value between a pair of boundary values (function template) |
Comparison operations | |
determines if two sets of elements are the same (function template) | |
returns true if one range is lexicographically less than another (function template) | |
compares two ranges using three-way comparison (function template) | |
Permutation operations | |
(C++11) |
determines if a sequence is a permutation of another sequence (function template) |
generates the next greater lexicographic permutation of a range of elements (function template) | |
generates the next smaller lexicographic permutation of a range of elements (function template) | |
Function-like entities (C++20) | |
Defined in namespace
std::ranges | |
Non-modifying sequence operations | |
(C++20)(C++20)(C++20) |
checks if a predicate is true for all, any or none of the elements in a range (niebloid) |
(C++20) |
applies a function to a range of elements (niebloid) |
(C++20) |
applies a function object to the first N elements of a sequence (niebloid) |
(C++20)(C++20) |
returns the number of elements satisfying specific criteria (niebloid) |
(C++20) |
finds the first position where two ranges differ (niebloid) |
(C++20)(C++20)(C++20) |
finds the first element satisfying specific criteria (niebloid) |
(C++23)(C++23)(C++23) |
finds the last element satisfying specific criteria (niebloid) |
(C++20) |
finds the last sequence of elements in a certain range (niebloid) |
(C++20) |
searches for any one of a set of elements (niebloid) |
(C++20) |
finds the first two adjacent items that are equal (or satisfy a given predicate) (niebloid) |
(C++20) |
searches for the first occurrence of a range of elements (niebloid) |
(C++20) |
searches for the first occurrence of a number consecutive copies of an element in a range (niebloid) |
(C++23)(C++23) |
checks if the range contains the given element or subrange (niebloid) |
(C++23) |
checks whether a range starts with another range (niebloid) |
(C++23) |
checks whether a range ends with another range (niebloid) |
Fold operations | |
(C++23) |
left-folds a range of elements (niebloid) |
(C++23) |
left-folds a range of elements using the first element as an initial value (niebloid) |
(C++23) |
right-folds a range of elements (niebloid) |
(C++23) |
right-folds a range of elements using the last element as an initial value (niebloid) |
(C++23) |
left-folds a range of elements, and returns a pair (iterator, value) (niebloid) |
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional) (niebloid) | |
Modifying sequence operations | |
(C++20)(C++20) |
copies a range of elements to a new location (niebloid) |
(C++20) |
copies a number of elements to a new location (niebloid) |
(C++20) |
copies a range of elements in backwards order (niebloid) |
(C++20) |
moves a range of elements to a new location (niebloid) |
(C++20) |
moves a range of elements to a new location in backwards order (niebloid) |
(C++20) |
assigns a range of elements a certain value (niebloid) |
(C++20) |
assigns a value to a number of elements (niebloid) |
(C++20) |
applies a function to a range of elements (niebloid) |
(C++20) |
saves the result of a function in a range (niebloid) |
(C++20) |
saves the result of N applications of a function (niebloid) |
(C++20)(C++20) |
removes elements satisfying specific criteria (niebloid) |
(C++20)(C++20) |
copies a range of elements omitting those that satisfy specific criteria (niebloid) |
(C++20)(C++20) |
replaces all values satisfying specific criteria with another value (niebloid) |
(C++20)(C++20) |
copies a range, replacing elements satisfying specific criteria with another value (niebloid) |
(C++20) |
swaps two ranges of elements (niebloid) |
(C++20) |
reverses the order of elements in a range (niebloid) |
(C++20) |
creates a copy of a range that is reversed (niebloid) |
(C++20) |
rotates the order of elements in a range (niebloid) |
(C++20) |
copies and rotate a range of elements (niebloid) |
shifts elements in a range (niebloid) | |
(C++20) |
selects N random elements from a sequence (niebloid) |
(C++20) |
randomly re-orders elements in a range (niebloid) |
(C++20) |
removes consecutive duplicate elements in a range (niebloid) |
(C++20) |
creates a copy of some range of elements that contains no consecutive duplicates (niebloid) |
Partitioning operations | |
(C++20) |
determines if the range is partitioned by the given predicate (niebloid) |
(C++20) |
divides a range of elements into two groups (niebloid) |
(C++20) |
copies a range dividing the elements into two groups (niebloid) |
(C++20) |
divides elements into two groups while preserving their relative order (niebloid) |
(C++20) |
locates the partition point of a partitioned range (niebloid) |
Sorting operations | |
(C++20) |
checks whether a range is sorted into ascending order (niebloid) |
(C++20) |
finds the largest sorted subrange (niebloid) |
(C++20) |
sorts a range into ascending order (niebloid) |
(C++20) |
sorts the first N elements of a range (niebloid) |
(C++20) |
copies and partially sorts a range of elements (niebloid) |
(C++20) |
sorts a range of elements while preserving order between equal elements (niebloid) |
(C++20) |
partially sorts the given range making sure that it is partitioned by the given element (niebloid) |
Binary search operations (on sorted ranges) | |
(C++20) |
returns an iterator to the first element not less than the given value (niebloid) |
(C++20) |
returns an iterator to the first element greater than a certain value (niebloid) |
(C++20) |
determines if an element exists in a partially-ordered range (niebloid) |
(C++20) |
returns range of elements matching a specific key (niebloid) |
Other operations on sorted ranges | |
(C++20) |
merges two sorted ranges (niebloid) |
(C++20) |
merges two ordered ranges in-place (niebloid) |
Set operations (on sorted ranges) | |
(C++20) |
returns true if one sequence is a subsequence of another (niebloid) |
(C++20) |
computes the difference between two sets (niebloid) |
(C++20) |
computes the intersection of two sets (niebloid) |
computes the symmetric difference between two sets (niebloid) | |
(C++20) |
computes the union of two sets (niebloid) |
Heap operations | |
(C++20) |
checks if the given range is a max heap (niebloid) |
(C++20) |
finds the largest subrange that is a max heap (niebloid) |
(C++20) |
creates a max heap out of a range of elements (niebloid) |
(C++20) |
adds an element to a max heap (niebloid) |
(C++20) |
removes the largest element from a max heap (niebloid) |
(C++20) |
turns a max heap into a range of elements sorted in ascending order (niebloid) |
Minimum/maximum operations | |
(C++20) |
returns the greater of the given values (niebloid) |
(C++20) |
returns the largest element in a range (niebloid) |
(C++20) |
returns the smaller of the given values (niebloid) |
(C++20) |
returns the smallest element in a range (niebloid) |
(C++20) |
returns the smaller and larger of two elements (niebloid) |
(C++20) |
returns the smallest and the largest elements in a range (niebloid) |
(C++20) |
clamps a value between a pair of boundary values (niebloid) |
Comparison operations | |
(C++20) |
determines if two sets of elements are the same (niebloid) |
returns true if one range is lexicographically less than another (niebloid) | |
Permutation operations | |
(C++20) |
determines if a sequence is a permutation of another sequence (niebloid) |
(C++20) |
generates the next greater lexicographic permutation of a range of elements (niebloid) |
(C++20) |
generates the next smaller lexicographic permutation of a range of elements (niebloid) |
[edit] Synopsis
#include <initializer_list> namespace std { namespace ranges { // algorithm result types template<class I, class F> struct in_fun_result; template<class I1, class I2> struct in_in_result; template<class I, class O> struct in_out_result; template<class I1, class I2, class O> struct in_in_out_result; template<class I, class O1, class O2> struct in_out_out_result; template<class T> struct min_max_result; template<class I> struct in_found_result; template<class I, class T> struct in_value_result; template<class O, class T> struct out_value_result; } // non-modifying sequence operations // all of template<class InputIter, class Pred> constexpr bool all_of(InputIter first, InputIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> bool all_of(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr bool all_of(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr bool all_of(R&& r, Pred pred, Proj proj = {}); } // any of template<class InputIter, class Pred> constexpr bool any_of(InputIter first, InputIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> bool any_of(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr bool any_of(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr bool any_of(R&& r, Pred pred, Proj proj = {}); } // none of template<class InputIter, class Pred> constexpr bool none_of(InputIter first, InputIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> bool none_of(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr bool none_of(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr bool none_of(R&& r, Pred pred, Proj proj = {}); } // contains namespace ranges { template<input_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr bool contains(I first, S last, const T& value, Proj proj = {}); template<input_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr bool contains(R&& r, const T& value, Proj proj = {}); template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool contains_subrange(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<forward_range R1, forward_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool contains_subrange(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } // for each template<class InputIter, class Function> constexpr Function for_each(InputIter first, InputIter last, Function f); template<class ExecutionPolicy, class ForwardIter, class Function> void for_each(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Function f); namespace ranges { template<class I, class F> using for_each_result = in_fun_result<I, F>; template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirectly_unary_invocable<projected<I, Proj>> Fun> constexpr for_each_result<I, Fun> for_each(I first, S last, Fun f, Proj proj = {}); template<input_range R, class Proj = identity, indirectly_unary_invocable<projected<iterator_t<R>, Proj>> Fun> constexpr for_each_result<borrowed_iterator_t<R>, Fun> for_each(R&& r, Fun f, Proj proj = {}); } template<class InputIter, class Size, class Function> constexpr InputIter for_each_n(InputIter first, Size n, Function f); template<class ExecutionPolicy, class ForwardIter, class Size, class Function> ForwardIter for_each_n(ExecutionPolicy&& exec, ForwardIter first, Size n, Function f); namespace ranges { template<class I, class F> using for_each_n_result = in_fun_result<I, F>; template<input_iterator I, class Proj = identity, indirectly_unary_invocable<projected<I, Proj>> Fun> constexpr for_each_n_result<I, Fun> for_each_n(I first, iter_difference_t<I> n, Fun f, Proj proj = {}); } // find template<class InputIter, class T = typename iterator_traits<InputIter>::value_type> constexpr InputIter find(InputIter first, InputIter last, const T& value); template<class ExecutionPolicy, class ForwardIter, class T = typename iterator_traits<InputIter>::value_type> ForwardIter find(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, const T& value); template<class InputIter, class Pred> constexpr InputIter find_if(InputIter first, InputIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> ForwardIter find_if(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); template<class InputIter, class Pred> constexpr InputIter find_if_not(InputIter first, InputIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> ForwardIter find_if_not(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<input_iterator I, sentinel_for<I> S, class Proj = identity class T = projected_value_t<I, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr I find(I first, S last, const T& value, Proj proj = {}); template<input_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr borrowed_iterator_t<R> find(R&& r, const T& value, Proj proj = {}); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr I find_if(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_iterator_t<R> find_if(R&& r, Pred pred, Proj proj = {}); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr I find_if_not(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_iterator_t<R> find_if_not(R&& r, Pred pred, Proj proj = {}); } // find last namespace ranges { template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr subrange<I> find_last(I first, S last, const T& value, Proj proj = {}); template<forward_range R, class T, class Proj = identity> requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr borrowed_subrange_t<R> find_last(R&& r, const T& value, Proj proj = {}); template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr subrange<I> find_last_if(I first, S last, Pred pred, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_subrange_t<R> find_last_if(R&& r, Pred pred, Proj proj = {}); template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr subrange<I> find_last_if_not(I first, S last, Pred pred, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_subrange_t<R> find_last_if_not(R&& r, Pred pred, Proj proj = {}); } // find end template<class ForwardIter1, class ForwardIter2> constexpr ForwardIter1 find_end(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ForwardIter1, class ForwardIter2, class BinaryPred> constexpr ForwardIter1 find_end(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> ForwardIter1 find_end(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class BinaryPred> ForwardIter1 find_end(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred); namespace ranges { template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr subrange<I1> find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<forward_range R1, forward_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr borrowed_subrange_t<R1> find_end(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } // find first template<class InputIter, class ForwardIter> constexpr InputIter find_first_of(InputIter first1, InputIter last1, ForwardIter first2, ForwardIter last2); template<class InputIter, class ForwardIter, class BinaryPred> constexpr InputIter find_first_of(InputIter first1, InputIter last1, ForwardIter first2, ForwardIter last2, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> ForwardIter1 find_first_of(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class BinaryPred> ForwardIter1 find_first_of(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred); namespace ranges { template<input_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr I1 find_first_of(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, forward_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr borrowed_iterator_t<R1> find_first_of(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } // adjacent find template<class ForwardIter> constexpr ForwardIter adjacent_find(ForwardIter first, ForwardIter last); template<class ForwardIter, class BinaryPred> constexpr ForwardIter adjacent_find(ForwardIter first, ForwardIter last, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter> ForwardIter adjacent_find(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last); template<class ExecutionPolicy, class ForwardIter, class BinaryPred> ForwardIter adjacent_find(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, BinaryPred pred); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_binary_predicate<projected<I, Proj>, projected<I, Proj>> Pred = ranges::equal_to> constexpr I adjacent_find(I first, S last, Pred pred = {}, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_binary_predicate<projected<iterator_t<R>, Proj>, projected<iterator_t<R>, Proj>> Pred = ranges::equal_to> constexpr borrowed_iterator_t<R> adjacent_find(R&& r, Pred pred = {}, Proj proj = {}); } // count template<class InputIter, class T = typename iterator_traits<InputIter>::value_type> constexpr typename iterator_traits<InputIter>::difference_type count(InputIter first, InputIter last, const T& value); template<class ExecutionPolicy, class ForwardIter, class T = typename iterator_traits<InputIterator>::value_type> typename iterator_traits<ForwardIter>::difference_type count(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, const T& value); template<class InputIter, class Pred> constexpr typename iterator_traits<InputIter>::difference_type count_if(InputIter first, InputIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> typename iterator_traits<ForwardIter>::difference_type count_if(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<input_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr iter_difference_t<I> count(I first, S last, const T& value, Proj proj = {}); template<input_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr range_difference_t<R> count(R&& r, const T& value, Proj proj = {}); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr iter_difference_t<I> count_if(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr range_difference_t<R> count_if(R&& r, Pred pred, Proj proj = {}); } // mismatch template<class InputIter1, class InputIter2> constexpr pair<InputIter1, InputIter2> mismatch(InputIter1 first1, InputIter1 last1, InputIter2 first2); template<class InputIter1, class InputIter2, class BinaryPred> constexpr pair<InputIter1, InputIter2> mismatch(InputIter1 first1, InputIter1 last1, InputIter2 first2, BinaryPred pred); template<class InputIter1, class InputIter2> constexpr pair<InputIter1, InputIter2> mismatch(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2); template<class InputIter1, class InputIter2, class BinaryPred> constexpr pair<InputIter1, InputIter2> mismatch(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> pair<ForwardIter1, ForwardIter2> mismatch(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class BinaryPred> pair<ForwardIter1, ForwardIter2> mismatch(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> pair<ForwardIter1, ForwardIter2> mismatch(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class BinaryPred> pair<ForwardIter1, ForwardIter2> mismatch(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred); namespace ranges { template<class I1, class I2> using mismatch_result = in_in_result<I1, I2>; template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr mismatch_result<I1, I2> mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr mismatch_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>> mismatch(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } // equal template<class InputIter1, class InputIter2> constexpr bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2); template<class InputIter1, class InputIter2, class BinaryPred> constexpr bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2, BinaryPred pred); template<class InputIter1, class InputIter2> constexpr bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2); template<class InputIter1, class InputIter2, class BinaryPred> constexpr bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> bool equal(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class BinaryPred> bool equal(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> bool equal(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class BinaryPred> bool equal(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred); namespace ranges { template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool equal(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool equal(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } // is permutation template<class ForwardIter1, class ForwardIter2> constexpr bool is_permutation(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2); template<class ForwardIter1, class ForwardIter2, class BinaryPred> constexpr bool is_permutation(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, BinaryPred pred); template<class ForwardIter1, class ForwardIter2> constexpr bool is_permutation(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ForwardIter1, class ForwardIter2, class BinaryPred> constexpr bool is_permutation(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred); namespace ranges { template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity, indirect_equivalence_relation<projected<I1, Proj1>, projected<I2, Proj2>> Pred = ranges::equal_to> constexpr bool is_permutation(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<forward_range R1, forward_range R2, class Proj1 = identity, class Proj2 = identity, indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>, projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to> constexpr bool is_permutation(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } // search template<class ForwardIter1, class ForwardIter2> constexpr ForwardIter1 search(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ForwardIter1, class ForwardIter2, class BinaryPred> constexpr ForwardIter1 search(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> ForwardIter1 search(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class BinaryPred> ForwardIter1 search(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, BinaryPred pred); namespace ranges { template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr subrange<I1> search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<forward_range R1, forward_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr borrowed_subrange_t<R1> search(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } template<class ForwardIter, class Size, class T = typename iterator_traits<ForwardIter>::value_type> constexpr ForwardIter search_n(ForwardIter first, ForwardIter last, Size count, const T& value); template<class ForwardIter, class Size, class T = typename iterator_traits<ForwardIter>::value_type, class BinaryPred> constexpr ForwardIter search_n(ForwardIter first, ForwardIter last, Size count, const T& value, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter, class Size, class T = typename iterator_traits<ForwardIter>::value_type> ForwardIter search_n(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Size count, const T& value); template<class ExecutionPolicy, class ForwardIter, class Size, class T = typename iterator_traits<ForwardIter>::value_type, class BinaryPred> ForwardIter search_n(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Size count, const T& value, BinaryPred pred); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Pred = ranges::equal_to, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirectly_comparable<I, const T*, Pred, Proj> constexpr subrange<I> search_n(I first, S last, iter_difference_t<I> count, const T& value, Pred pred = {}, Proj proj = {}); template<forward_range R, class Pred = ranges::equal_to, class Proj = identity, projected_value_t<iterator_t<R>, Proj>> requires indirectly_comparable<iterator_t<R>, const T*, Pred, Proj> constexpr borrowed_subrange_t<R> search_n(R&& r, range_difference_t<R> count, const T& value, Pred pred = {}, Proj proj = {}); } template<class ForwardIter, class Searcher> constexpr ForwardIter search(ForwardIter first, ForwardIter last, const Searcher& searcher); namespace ranges { // starts with template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool starts_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool starts_with(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); // ends with template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires (forward_iterator<I1> || sized_sentinel_for<S1, I1>) && (forward_iterator<I2> || sized_sentinel_for<S2, I2>) && indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool ends_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires (forward_range<R1> || sized_range<R1>) && (forward_range<R2> || sized_range<R2>) && indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool ends_with(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); // fold template<class F> class /* flipped */ { // exposition only F f; // exposition only public: template<class T, class U> requires invocable<F&, U, T> invoke_result_t<F&, U, T> operator()(T&&, U&&); }; template<class F, class T, class I, class U> concept /* indirectly-binary-left-foldable-impl */ = // exposition only movable<T> && movable<U> && convertible_to<T, U> && invocable<F&, U, iter_reference_t<I>> && assignable_from<U&, invoke_result_t<F&, U, iter_reference_t<I>>>; template<class F, class T, class I> concept /* indirectly-binary-left-foldable */ = // exposition only copy_constructible<F> && indirectly_readable<I> && invocable<F&, T, iter_reference_t<I>> && convertible_to<invoke_result_t<F&, T, iter_reference_t<I>>, decay_t<invoke_result_t<F&, T, iter_reference_t<I>>>> && /* indirectly-binary-left-foldable-impl */ <F, T, I, decay_t<invoke_result_t<F&, T, iter_reference_t<I>>>>; template<class F, class T, class I> concept /* indirectly-binary-right-foldable */ = // exposition only /* indirectly-binary-left-foldable */</* flipped */<F>, T, I>; template<input_iterator I, sentinel_for<I> S, class T = iter_value_t<I>, /* indirectly-binary-left-foldable */<T, I> F> constexpr auto fold_left(I first, S last, T init, F f); template<input_range R, class T = range_value_t<R>, /* indirectly-binary-left-foldable */<T, iterator_t<R>> F> constexpr auto fold_left(R&& r, T init, F f); template<input_iterator I, sentinel_for<I> S, /* indirectly-binary-left-foldable */<iter_value_t<I>, I> F> requires constructible_from<iter_value_t<I>, iter_reference_t<I>> constexpr auto fold_left_first(I first, S last, F f); template<input_range R, /* indirectly-binary-left-foldable */<range_value_t<R>, iterator_t<R>> F> requires constructible_from<range_value_t<R>, range_reference_t<R>> constexpr auto fold_left_first(R&& r, F f); template<bidirectional_iterator I, sentinel_for<I> S, class T = iter_value_t<I>, /* indirectly-binary-right-foldable */<T, I> F> constexpr auto fold_right(I first, S last, T init, F f); template<bidirectional_range R, class T = range_value_t<R>, /* indirectly-binary-right-foldable */<T, iterator_t<R>> F> constexpr auto fold_right(R&& r, T init, F f); template<bidirectional_iterator I, sentinel_for<I> S, /* indirectly-binary-right-foldable */<iter_value_t<I>, I> F> requires constructible_from<iter_value_t<I>, iter_reference_t<I>> constexpr auto fold_right_last(I first, S last, F f); template<bidirectional_range R, /* indirectly-binary-right-foldable */<range_value_t<R>, iterator_t<R>> F> requires constructible_from<range_value_t<R>, range_reference_t<R>> constexpr auto fold_right_last(R&& r, F f); template<class I, class T> using fold_left_with_iter_result = in_value_result<I, T>; template<class I, class T> using fold_left_first_with_iter_result = in_value_result<I, T>; template<input_iterator I, sentinel_for<I> S, class T = iter_value_t<I>, /* indirectly-binary-left-foldable */<T, I> F> constexpr /* see description */ fold_left_with_iter(I first, S last, T init, F f); template<input_range R, class T = range_value_t<R>, /* indirectly-binary-left-foldable */<T, iterator_t<R>> F> constexpr /* see description */ fold_left_with_iter(R&& r, T init, F f); template<input_iterator I, sentinel_for<I> S, /* indirectly-binary-left-foldable */<iter_value_t<I>, I> F> requires constructible_from<iter_value_t<I>, iter_reference_t<I>> constexpr /* see description */ fold_left_first_with_iter(I first, S last, F f); template<input_range R, /* indirectly-binary-left-foldable */<range_value_t<R>, iterator_t<R>> F> requires constructible_from<range_value_t<R>, range_reference_t<R>> constexpr /* see description */ fold_left_first_with_iter(R&& r, F f); } // mutating sequence operations // copy template<class InputIter, class OutputIter> constexpr OutputIter copy(InputIter first, InputIter last, OutputIter result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> ForwardIter2 copy(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result); namespace ranges { template<class I, class O> using copy_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, weakly_incrementable O> requires indirectly_copyable<I, O> constexpr copy_result<I, O> copy(I first, S last, O result); template<input_range R, weakly_incrementable O> requires indirectly_copyable<iterator_t<R>, O> constexpr copy_result<borrowed_iterator_t<R>, O> copy(R&& r, O result); } template<class InputIter, class Size, class OutputIter> constexpr OutputIter copy_n(InputIter first, Size n, OutputIter result); template<class ExecutionPolicy, class ForwardIter1, class Size, class ForwardIter2> ForwardIter2 copy_n(ExecutionPolicy&& exec, ForwardIter1 first, Size n, ForwardIter2 result); namespace ranges { template<class I, class O> using copy_n_result = in_out_result<I, O>; template<input_iterator I, weakly_incrementable O> requires indirectly_copyable<I, O> constexpr copy_n_result<I, O> copy_n(I first, iter_difference_t<I> n, O result); } template<class InputIter, class OutputIter, class Pred> constexpr OutputIter copy_if(InputIter first, InputIter last, OutputIter result, Pred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class Pred> ForwardIter2 copy_if(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result, Pred pred); namespace ranges { template<class I, class O> using copy_if_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> requires indirectly_copyable<I, O> constexpr copy_if_result<I, O> copy_if(I first, S last, O result, Pred pred, Proj proj = {}); template<input_range R, weakly_incrementable O, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> requires indirectly_copyable<iterator_t<R>, O> constexpr copy_if_result<borrowed_iterator_t<R>, O> copy_if(R&& r, O result, Pred pred, Proj proj = {}); } template<class BidirectionalIter1, class BidirectionalIter2> constexpr BidirectionalIter2 copy_backward(BidirectionalIter1 first, BidirectionalIter1 last, BidirectionalIter2 result); namespace ranges { template<class I1, class I2> using copy_backward_result = in_out_result<I1, I2>; template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2> requires indirectly_copyable<I1, I2> constexpr copy_backward_result<I1, I2> copy_backward(I1 first, S1 last, I2 result); template<bidirectional_range R, bidirectional_iterator I> requires indirectly_copyable<iterator_t<R>, I> constexpr copy_backward_result<borrowed_iterator_t<R>, I> copy_backward(R&& r, I result); } // move template<class InputIter, class OutputIter> constexpr OutputIter move(InputIter first, InputIter last, OutputIter result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> ForwardIter2 move(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result); namespace ranges { template<class I, class O> using move_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, weakly_incrementable O> requires indirectly_movable<I, O> constexpr move_result<I, O> move(I first, S last, O result); template<input_range R, weakly_incrementable O> requires indirectly_movable<iterator_t<R>, O> constexpr move_result<borrowed_iterator_t<R>, O> move(R&& r, O result); } template<class BidirectionalIter1, class BidirectionalIter2> constexpr BidirectionalIter2 move_backward(BidirectionalIter1 first, BidirectionalIter1 last, BidirectionalIter2 result); namespace ranges { template<class I1, class I2> using move_backward_result = in_out_result<I1, I2>; template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2> requires indirectly_movable<I1, I2> constexpr move_backward_result<I1, I2> move_backward(I1 first, S1 last, I2 result); template<bidirectional_range R, bidirectional_iterator I> requires indirectly_movable<iterator_t<R>, I> constexpr move_backward_result<borrowed_iterator_t<R>, I> move_backward(R&& r, I result); } // swap template<class ForwardIter1, class ForwardIter2> constexpr ForwardIter2 swap_ranges(ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> ForwardIter2 swap_ranges(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2); namespace ranges { template<class I1, class I2> using swap_ranges_result = in_in_result<I1, I2>; template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2> requires indirectly_swappable<I1, I2> constexpr swap_ranges_result<I1, I2> swap_ranges(I1 first1, S1 last1, I2 first2, S2 last2); template<input_range R1, input_range R2> requires indirectly_swappable<iterator_t<R1>, iterator_t<R2>> constexpr swap_ranges_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>> swap_ranges(R1&& r1, R2&& r2); } template<class ForwardIter1, class ForwardIter2> constexpr void iter_swap(ForwardIter1 a, ForwardIter2 b); // transform template<class InputIter, class OutputIter, class UnaryOperation> constexpr OutputIter transform(InputIter first1, InputIter last1, OutputIter result, UnaryOperation op); template<class InputIter1, class InputIter2, class OutputIter, class BinaryOperation> constexpr OutputIter transform(InputIter1 first1, InputIter1 last1, InputIter2 first2, OutputIter result, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class UnaryOperation> ForwardIter2 transform(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 result, UnaryOperation op); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter, class BinaryOperation> ForwardIter transform(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter result, BinaryOperation binary_op); namespace ranges { template<class I, class O> using unary_transform_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, copy_constructible F, class Proj = identity> requires indirectly_writable<O, indirect_result_t<F&, projected<I, Proj>>> constexpr unary_transform_result<I, O> transform(I first1, S last1, O result, F op, Proj proj = {}); template<input_range R, weakly_incrementable O, copy_constructible F, class Proj = identity> requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R>, Proj>>> constexpr unary_transform_result<borrowed_iterator_t<R>, O> transform(R&& r, O result, F op, Proj proj = {}); template<class I1, class I2, class O> using binary_transform_result = in_in_out_result<I1, I2, O>; template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, weakly_incrementable O, copy_constructible F, class Proj1 = identity, class Proj2 = identity> requires indirectly_writable<O, indirect_result_t<F&, projected<I1, Proj1>, projected<I2, Proj2>>> constexpr binary_transform_result<I1, I2, O> transform(I1 first1, S1 last1, I2 first2, S2 last2, O result, F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, weakly_incrementable O, copy_constructible F, class Proj1 = identity, class Proj2 = identity> requires indirectly_writable <O, indirect_result_t<F&, projected<iterator_t<R1>, Proj1>, projected<iterator_t<R2>, Proj2>>> constexpr binary_transform_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O> transform(R1&& r1, R2&& r2, O result, F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {}); } // replace template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> constexpr void replace(ForwardIter first, ForwardIter last, const T& old_value, const T& new_value); template<class ExecutionPolicy, class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> void replace(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, const T& old_value, const T& new_value); template<class ForwardIter, class Pred, class T = typename iterator_traits<ForwardIter>::value_type> constexpr void replace_if(ForwardIter first, ForwardIter last, Pred pred, const T& new_value); template<class ExecutionPolicy, class ForwardIter, class Pred, class T = typename iterator_traits<ForwardIter>::value_type> void replace_if(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred, const T& new_value); namespace ranges { template<input_iterator I, sentinel_for<I> S, class Proj = identity, class T1 = projected_value_t<I, Proj>, class T2 = T1> requires indirectly_writable<I, const T2&> && indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*> constexpr I replace(I first, S last, const T1& old_value, const T2& new_value, Proj proj = {}); template<input_range R, class Proj = identity, class T1 = projected_value_t<iterator_t<R>, Proj>, class T2 = T1> requires indirectly_writable<iterator_t<R>, const T2&> && indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T1*> constexpr borrowed_iterator_t<R> replace(R&& r, const T1& old_value, const T2& new_value, Proj proj = {}); template<input_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>, indirect_unary_predicate<projected<I, Proj>> Pred> requires indirectly_writable<I, const T&> constexpr I replace_if(I first, S last, Pred pred, const T& new_value, Proj proj = {}); template<input_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> requires indirectly_writable<iterator_t<R>, const T&> constexpr borrowed_iterator_t<R> replace_if(R&& r, Pred pred, const T& new_value, Proj proj = {}); } template<class InputIter, class OutputIter, class T> constexpr OutputIter replace_copy(InputIter first, InputIter last, OutputIter result, const T& old_value, const T& new_value); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class T> ForwardIter2 replace_copy(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result, const T& old_value, const T& new_value); template<class InputIter, class OutputIter, class Pred, class T = typename iterator_traits<OutputIter>::value_type> constexpr OutputIter replace_copy_if(InputIter first, InputIter last, OutputIter result, Pred pred, const T& new_value); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class Pred, class T = typename iterator_traits<ForwardIter2>::value_type> ForwardIter2 replace_copy_if(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result, Pred pred, const T& new_value); namespace ranges { template<class I, class O> using replace_copy_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, class O, class Proj = identity, class T1 = projected_value_t<I, Proj>, class T2 = iter_value_t<O>> requires indirectly_copyable<I, O> && indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*> && output_iterator<O, const T2&> constexpr replace_copy_result<I, O> replace_copy(I first, S last, O result, const T1& old_value, const T2& new_value, Proj proj = {}); template<input_range R, class O, class Proj = identity, class T1 = projected_value_t<iterator_t<R>, Proj>, class T2 = iter_value_t<O>> requires indirectly_copyable<iterator_t<R>, O> && indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T1*> && output_iterator<O, const T2&> constexpr replace_copy_result<borrowed_iterator_t<R>, O> replace_copy(R&& r, O result, const T1& old_value, const T2& new_value, Proj proj = {}); template<class I, class O> using replace_copy_if_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, class O, class T = iter_value_t<O>, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> requires indirectly_copyable<I, O> && output_iterator<O, const T&> constexpr replace_copy_if_result<I, O> replace_copy_if(I first, S last, O result, Pred pred, const T& new_value, Proj proj = {}); template<input_range R, class O, class T = iter_value_t<O>, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> requires indirectly_copyable<iterator_t<R>, O> && output_iterator<O, const T&> constexpr replace_copy_if_result<borrowed_iterator_t<R>, O> replace_copy_if(R&& r, O result, Pred pred, const T& new_value, Proj proj = {}); } // fill template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> constexpr void fill(ForwardIter first, ForwardIter last, const T& value); template<class ExecutionPolicy, class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> void fill(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, const T& value); template<class OutputIter, class Size, class T = typename iterator_traits<OutputIter>::value_type> constexpr OutputIter fill_n(OutputIter first, Size n, const T& value); template<class ExecutionPolicy, class ForwardIter, class Size, class T = typename iterator_traits<OutputIter>::value_type> ForwardIter fill_n(ExecutionPolicy&& exec, ForwardIter first, Size n, const T& value); namespace ranges { template<class O, sentinel_for<O> S, class T = iter_value_t<O>> requires output_iterator<O, const T&> constexpr O fill(O first, S last, const T& value); template<class R, class T = range_value_t<R>> requires output_range<R, const T&> constexpr borrowed_iterator_t<R> fill(R&& r, const T& value); template<class O, class T = iter_value_t<O>> requires output_iterator<O, const T&> constexpr O fill_n(O first, iter_difference_t<O> n, const T& value); } // generate template<class ForwardIter, class Generator> constexpr void generate(ForwardIter first, ForwardIter last, Generator gen); template<class ExecutionPolicy, class ForwardIter, class Generator> void generate(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Generator gen); template<class OutputIter, class Size, class Generator> constexpr OutputIter generate_n(OutputIter first, Size n, Generator gen); template<class ExecutionPolicy, class ForwardIter, class Size, class Generator> ForwardIter generate_n(ExecutionPolicy&& exec, ForwardIter first, Size n, Generator gen); namespace ranges { template<input_or_output_iterator O, sentinel_for<O> S, copy_constructible F> requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>> constexpr O generate(O first, S last, F gen); template<class R, copy_constructible F> requires invocable<F&> && output_range<R, invoke_result_t<F&>> constexpr borrowed_iterator_t<R> generate(R&& r, F gen); template<input_or_output_iterator O, copy_constructible F> requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>> constexpr O generate_n(O first, iter_difference_t<O> n, F gen); } // remove template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> constexpr ForwardIter remove(ForwardIter first, ForwardIter last, const T& value); template<class ExecutionPolicy, class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> ForwardIter remove(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, const T& value); template<class ForwardIter, class Pred> constexpr ForwardIter remove_if(ForwardIter first, ForwardIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> ForwardIter remove_if(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<permutable I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr subrange<I> remove(I first, S last, const T& value, Proj proj = {}); template<forward_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires permutable<iterator_t<R>> && indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr borrowed_subrange_t<R> remove(R&& r, const T& value, Proj proj = {}); template<permutable I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr subrange<I> remove_if(I first, S last, Pred pred, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> requires permutable<iterator_t<R>> constexpr borrowed_subrange_t<R> remove_if(R&& r, Pred pred, Proj proj = {}); } template<class InputIter, class OutputIter, class T = typename iterator_traits<InputIter>::value_type> constexpr OutputIter remove_copy(InputIter first, InputIter last, OutputIter result, const T& value); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class T = typename iterator_traits<ForwardIter1>::value_type> ForwardIter2 remove_copy(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result, const T& value); template<class InputIter, class OutputIter, class Pred> constexpr OutputIter remove_copy_if(InputIter first, InputIter last, OutputIter result, Pred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class Pred> ForwardIter2 remove_copy_if(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result, Pred pred); namespace ranges { template<class I, class O> using remove_copy_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirectly_copyable<I, O> && indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr remove_copy_result<I, O> remove_copy(I first, S last, O result, const T& value, Proj proj = {}); template<input_range R, weakly_incrementable O, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirectly_copyable<iterator_t<R>, O> && indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr remove_copy_result<borrowed_iterator_t<R>, O> remove_copy(R&& r, O result, const T& value, Proj proj = {}); template<class I, class O> using remove_copy_if_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> requires indirectly_copyable<I, O> constexpr remove_copy_if_result<I, O> remove_copy_if(I first, S last, O result, Pred pred, Proj proj = {}); template<input_range R, weakly_incrementable O, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> requires indirectly_copyable<iterator_t<R>, O> constexpr remove_copy_if_result<borrowed_iterator_t<R>, O> remove_copy_if(R&& r, O result, Pred pred, Proj proj = {}); } // unique template<class ForwardIter> constexpr ForwardIter unique(ForwardIter first, ForwardIter last); template<class ForwardIter, class BinaryPred> constexpr ForwardIter unique(ForwardIter first, ForwardIter last, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter> ForwardIter unique(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last); template<class ExecutionPolicy, class ForwardIter, class BinaryPred> ForwardIter unique(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, BinaryPred pred); namespace ranges { template<permutable I, sentinel_for<I> S, class Proj = identity, indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to> constexpr subrange<I> unique(I first, S last, C comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_equivalence_relation <projected<iterator_t<R>, Proj>> C = ranges::equal_to> requires permutable<iterator_t<R>> constexpr borrowed_subrange_t<R> unique(R&& r, C comp = {}, Proj proj = {}); } template<class InputIter, class OutputIter> constexpr OutputIter unique_copy(InputIter first, InputIter last, OutputIter result); template<class InputIter, class OutputIter, class BinaryPred> constexpr OutputIter unique_copy(InputIter first, InputIter last, OutputIter result, BinaryPred pred); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> ForwardIter2 unique_copy(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class BinaryPred> ForwardIter2 unique_copy(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 last, ForwardIter2 result, BinaryPred pred); namespace ranges { template<class I, class O> using unique_copy_result = in_out_result<I, O>; template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity, indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to> requires indirectly_copyable<I, O> && (forward_iterator<I> || (input_iterator<O> && same_as<iter_value_t<I>, iter_value_t<O>>) || indirectly_copyable_storable<I, O>) constexpr unique_copy_result<I, O> unique_copy(I first, S last, O result, C comp = {}, Proj proj = {}); template<input_range R, weakly_incrementable O, class Proj = identity, indirect_equivalence_relation <projected<iterator_t<R>, Proj>> C = ranges::equal_to> requires indirectly_copyable<iterator_t<R>, O> && (forward_iterator<iterator_t<R>> || (input_iterator<O> && same_as<range_value_t<R>, iter_value_t<O>>) || indirectly_copyable_storable<iterator_t<R>, O>) constexpr unique_copy_result<borrowed_iterator_t<R>, O> unique_copy(R&& r, O result, C comp = {}, Proj proj = {}); } // reverse template<class BidirectionalIter> constexpr void reverse(BidirectionalIter first, BidirectionalIter last); template<class ExecutionPolicy, class BidirectionalIter> void reverse(ExecutionPolicy&& exec, BidirectionalIter first, BidirectionalIter last); namespace ranges { template<bidirectional_iterator I, sentinel_for<I> S> requires permutable<I> constexpr I reverse(I first, S last); template<bidirectional_range R> requires permutable<iterator_t<R>> constexpr borrowed_iterator_t<R> reverse(R&& r); } template<class BidirectionalIter, class OutputIter> constexpr OutputIter reverse_copy(BidirectionalIter first, BidirectionalIter last, OutputIter result); template<class ExecutionPolicy, class BidirectionalIter, class ForwardIter> ForwardIter reverse_copy(ExecutionPolicy&& exec, BidirectionalIter first, BidirectionalIter last, ForwardIter result); namespace ranges { template<class I, class O> using reverse_copy_result = in_out_result<I, O>; template<bidirectional_iterator I, sentinel_for<I> S, weakly_incrementable O> requires indirectly_copyable<I, O> constexpr reverse_copy_result<I, O> reverse_copy(I first, S last, O result); template<bidirectional_range R, weakly_incrementable O> requires indirectly_copyable<iterator_t<R>, O> constexpr reverse_copy_result<borrowed_iterator_t<R>, O> reverse_copy(R&& r, O result); } // rotate template<class ForwardIter> constexpr ForwardIter rotate(ForwardIter first, ForwardIter middle, ForwardIter last); template<class ExecutionPolicy, class ForwardIter> ForwardIter rotate(ExecutionPolicy&& exec, ForwardIter first, ForwardIter middle, ForwardIter last); namespace ranges { template<permutable I, sentinel_for<I> S> constexpr subrange<I> rotate(I first, I middle, S last); template<forward_range R> requires permutable<iterator_t<R>> constexpr borrowed_subrange_t<R> rotate(R&& r, iterator_t<R> middle); } template<class ForwardIter, class OutputIter> constexpr OutputIter rotate_copy(ForwardIter first, ForwardIter middle, ForwardIter last, OutputIter result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> ForwardIter2 rotate_copy(ExecutionPolicy&& exec, ForwardIter1 first, ForwardIter1 middle, ForwardIter1 last, ForwardIter2 result); namespace ranges { template<class I, class O> using rotate_copy_result = in_out_result<I, O>; template<forward_iterator I, sentinel_for<I> S, weakly_incrementable O> requires indirectly_copyable<I, O> constexpr rotate_copy_result<I, O> rotate_copy(I first, I middle, S last, O result); template<forward_range R, weakly_incrementable O> requires indirectly_copyable<iterator_t<R>, O> constexpr rotate_copy_result<borrowed_iterator_t<R>, O> rotate_copy(R&& r, iterator_t<R> middle, O result); } // sample template<class PopulationIter, class SampleIter, class Distance, class UniformRandomBitGenerator> SampleIter sample(PopulationIter first, PopulationIter last, SampleIter out, Distance n, UniformRandomBitGenerator&& g); namespace ranges { template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Gen> requires (forward_iterator<I> || random_access_iterator<O>) && indirectly_copyable<I, O> && uniform_random_bit_generator<remove_reference_t<Gen>> O sample(I first, S last, O out, iter_difference_t<I> n, Gen&& g); template<input_range R, weakly_incrementable O, class Gen> requires (forward_range<R> || random_access_iterator<O>) && indirectly_copyable<iterator_t<R>, O> && uniform_random_bit_generator<remove_reference_t<Gen>> O sample(R&& r, O out, range_difference_t<R> n, Gen&& g); } // shuffle template<class RandomAccessIter, class UniformRandomBitGenerator> void shuffle(RandomAccessIter first, RandomAccessIter last, UniformRandomBitGenerator&& g); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Gen> requires permutable<I> && uniform_random_bit_generator<remove_reference_t<Gen>> I shuffle(I first, S last, Gen&& g); template<random_access_range R, class Gen> requires permutable<iterator_t<R>> && uniform_random_bit_generator<remove_reference_t<Gen>> borrowed_iterator_t<R> shuffle(R&& r, Gen&& g); } // shift template<class ForwardIter> constexpr ForwardIter shift_left(ForwardIter first, ForwardIter last, typename iterator_traits<ForwardIter>::difference_type n); template<class ExecutionPolicy, class ForwardIter> ForwardIter shift_left(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, typename iterator_traits<ForwardIter>::difference_type n); namespace ranges { template<permutable I, sentinel_for<I> S> constexpr subrange<I> shift_left(I first, S last, iter_difference_t<I> n); template<forward_range R> requires permutable<iterator_t<R>> constexpr borrowed_subrange_t<R> shift_left(R&& r, range_difference_t<R> n); } template<class ForwardIter> constexpr ForwardIter shift_right(ForwardIter first, ForwardIter last, typename iterator_traits<ForwardIter>::difference_type n); template<class ExecutionPolicy, class ForwardIter> ForwardIter shift_right(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, typename iterator_traits<ForwardIter>::difference_type n); namespace ranges { template<permutable I, sentinel_for<I> S> constexpr subrange<I> shift_right(I first, S last, iter_difference_t<I> n); template<forward_range R> requires permutable<iterator_t<R>> constexpr borrowed_subrange_t<R> shift_right(R&& r, range_difference_t<R> n); } // sorting and related operations // sorting template<class RandomAccessIter> constexpr void sort(RandomAccessIter first, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr void sort(RandomAccessIter first, RandomAccessIter last, Compare comp); template<class ExecutionPolicy, class RandomAccessIter> void sort(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter last); template<class ExecutionPolicy, class RandomAccessIter, class Compare> void sort(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr I sort(I first, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr borrowed_iterator_t<R> sort(R&& r, Comp comp = {}, Proj proj = {}); } template<class RandomAccessIter> void stable_sort(RandomAccessIter first, RandomAccessIter last); template<class RandomAccessIter, class Compare> void stable_sort(RandomAccessIter first, RandomAccessIter last, Compare comp); template<class ExecutionPolicy, class RandomAccessIter> void stable_sort(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter last); template<class ExecutionPolicy, class RandomAccessIter, class Compare> void stable_sort(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> I stable_sort(I first, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> borrowed_iterator_t<R> stable_sort(R&& r, Comp comp = {}, Proj proj = {}); } template<class RandomAccessIter> constexpr void partial_sort(RandomAccessIter first, RandomAccessIter middle, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr void partial_sort(RandomAccessIter first, RandomAccessIter middle, RandomAccessIter last, Compare comp); template<class ExecutionPolicy, class RandomAccessIter> void partial_sort(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter middle, RandomAccessIter last); template<class ExecutionPolicy, class RandomAccessIter, class Compare> void partial_sort(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter middle, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr I partial_sort(I first, I middle, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr borrowed_iterator_t<R> partial_sort(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {}); } template<class InputIter, class RandomAccessIter> constexpr RandomAccessIter partial_sort_copy(InputIter first, InputIter last, RandomAccessIter result_first, RandomAccessIter result_last); template<class InputIter, class RandomAccessIter, class Compare> constexpr RandomAccessIter partial_sort_copy(InputIter first, InputIter last, RandomAccessIter result_first, RandomAccessIter result_last, Compare comp); template<class ExecutionPolicy, class ForwardIter, class RandomAccessIter> RandomAccessIter partial_sort_copy(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, RandomAccessIter result_first, RandomAccessIter result_last); template<class ExecutionPolicy, class ForwardIter, class RandomAccessIter, class Compare> RandomAccessIter partial_sort_copy(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, RandomAccessIter result_first, RandomAccessIter result_last, Compare comp); namespace ranges { template<class I, class O> using partial_sort_copy_result = in_out_result<I, O>; template<input_iterator I1, sentinel_for<I1> S1, random_access_iterator I2, sentinel_for<I2> S2, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires indirectly_copyable<I1, I2> && sortable<I2, Comp, Proj2> && indirect_strict_weak_order<Comp, projected<I1, Proj1>, projected<I2, Proj2>> constexpr partial_sort_copy_result<I1, I2> partial_sort_copy(I1 first, S1 last, I2 result_first, S2 result_last, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, random_access_range R2, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires indirectly_copyable<iterator_t<R1>, iterator_t<R2>> && sortable<iterator_t<R2>, Comp, Proj2> && indirect_strict_weak_order<Comp, projected<iterator_t<R1>, Proj1>, projected<iterator_t<R2>, Proj2>> constexpr partial_sort_copy_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>> partial_sort_copy(R1&& r, R2&& result_r, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } template<class ForwardIter> constexpr bool is_sorted(ForwardIter first, ForwardIter last); template<class ForwardIter, class Compare> constexpr bool is_sorted(ForwardIter first, ForwardIter last, Compare comp); template<class ExecutionPolicy, class ForwardIter> bool is_sorted(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last); template<class ExecutionPolicy, class ForwardIter, class Compare> bool is_sorted(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Compare comp); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less> constexpr bool is_sorted(I first, S last, Comp comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr bool is_sorted(R&& r, Comp comp = {}, Proj proj = {}); } template<class ForwardIter> constexpr ForwardIter is_sorted_until(ForwardIter first, ForwardIter last); template<class ForwardIter, class Compare> constexpr ForwardIter is_sorted_until(ForwardIter first, ForwardIter last, Compare comp); template<class ExecutionPolicy, class ForwardIter> ForwardIter is_sorted_until(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last); template<class ExecutionPolicy, class ForwardIter, class Compare> ForwardIter is_sorted_until(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Compare comp); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less> constexpr I is_sorted_until(I first, S last, Comp comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr borrowed_iterator_t<R> is_sorted_until(R&& r, Comp comp = {}, Proj proj = {}); } // Nth element template<class RandomAccessIter> constexpr void nth_element(RandomAccessIter first, RandomAccessIter nth, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr void nth_element(RandomAccessIter first, RandomAccessIter nth, RandomAccessIter last, Compare comp); template<class ExecutionPolicy, class RandomAccessIter> void nth_element(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter nth, RandomAccessIter last); template<class ExecutionPolicy, class RandomAccessIter, class Compare> void nth_element(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter nth, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr I nth_element(I first, I nth, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr borrowed_iterator_t<R> nth_element(R&& r, iterator_t<R> nth, Comp comp = {}, Proj proj = {}); } // binary search template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> constexpr ForwardIter lower_bound(ForwardIter first, ForwardIter last, const T& value); template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type, class Compare> constexpr ForwardIter lower_bound(ForwardIter first, ForwardIter last, const T& value, Compare comp); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>, indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less> constexpr I lower_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>, indirect_strict_weak_order <const T*, projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr borrowed_iterator_t<R> lower_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {}); } template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> constexpr ForwardIter upper_bound(ForwardIter first, ForwardIter last, const T& value); template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type, class Compare> constexpr ForwardIter upper_bound(ForwardIter first, ForwardIter last, const T& value, Compare comp); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>, indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less> constexpr I upper_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {}); template<forward_range R, class T, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>, indirect_strict_weak_order <const T*, projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr borrowed_iterator_t<R> upper_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {}); } template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> constexpr pair<ForwardIter, ForwardIter> equal_range(ForwardIter first, ForwardIter last, const T& value); template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type, class Compare> constexpr pair<ForwardIter, ForwardIter> equal_range(ForwardIter first, ForwardIter last, const T& value, Compare comp); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>, indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less> constexpr subrange<I> equal_range(I first, S last, const T& value, Comp comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>, indirect_strict_weak_order <const T*, projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr borrowed_subrange_t<R> equal_range(R&& r, const T& value, Comp comp = {}, Proj proj = {}); } template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type> constexpr bool binary_search(ForwardIter first, ForwardIter last, const T& value); template<class ForwardIter, class T = typename iterator_traits<ForwardIter>::value_type, class Compare> constexpr bool binary_search(ForwardIter first, ForwardIter last, const T& value, Compare comp); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>, indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less> constexpr bool binary_search(I first, S last, const T& value, Comp comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>, indirect_strict_weak_order <const T*, projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr bool binary_search(R&& r, const T& value, Comp comp = {}, Proj proj = {}); } // partitions template<class InputIter, class Pred> constexpr bool is_partitioned(InputIter first, InputIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> bool is_partitioned(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr bool is_partitioned(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr bool is_partitioned(R&& r, Pred pred, Proj proj = {}); } template<class ForwardIter, class Pred> constexpr ForwardIter partition(ForwardIter first, ForwardIter last, Pred pred); template<class ExecutionPolicy, class ForwardIter, class Pred> ForwardIter partition(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<permutable I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr subrange<I> partition(I first, S last, Pred pred, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> requires permutable<iterator_t<R>> constexpr borrowed_subrange_t<R> partition(R&& r, Pred pred, Proj proj = {}); } template<class BidirectionalIter, class Pred> BidirectionalIter stable_partition(BidirectionalIter first, BidirectionalIter last, Pred pred); template<class ExecutionPolicy, class BidirectionalIter, class Pred> BidirectionalIter stable_partition(ExecutionPolicy&& exec, BidirectionalIter first, BidirectionalIter last, Pred pred); namespace ranges { template<bidirectional_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> requires permutable<I> subrange<I> stable_partition(I first, S last, Pred pred, Proj proj = {}); template<bidirectional_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> requires permutable<iterator_t<R>> borrowed_subrange_t<R> stable_partition(R&& r, Pred pred, Proj proj = {}); } template<class InputIter, class OutputIter1, class OutputIter2, class Pred> constexpr pair<OutputIter1, OutputIter2> partition_copy(InputIter first, InputIter last, OutputIter1 out_true, OutputIter2 out_false, Pred pred); template<class ExecutionPolicy, class ForwardIter, class ForwardIter1, class ForwardIter2, class Pred> pair<ForwardIter1, ForwardIter2> partition_copy(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, ForwardIter1 out_true, ForwardIter2 out_false, Pred pred); namespace ranges { template<class I, class O1, class O2> using partition_copy_result = in_out_out_result<I, O1, O2>; template<input_iterator I, sentinel_for<I> S, weakly_incrementable O1, weakly_incrementable O2, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> requires indirectly_copyable<I, O1> && indirectly_copyable<I, O2> constexpr partition_copy_result<I, O1, O2> partition_copy(I first, S last, O1 out_true, O2 out_false, Pred pred, Proj proj = {}); template<input_range R, weakly_incrementable O1, weakly_incrementable O2, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> requires indirectly_copyable<iterator_t<R>, O1> && indirectly_copyable<iterator_t<R>, O2> constexpr partition_copy_result<borrowed_iterator_t<R>, O1, O2> partition_copy(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {}); } template<class ForwardIter, class Pred> constexpr ForwardIter partition_point(ForwardIter first, ForwardIter last, Pred pred); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr I partition_point(I first, S last, Pred pred, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_iterator_t<R> partition_point(R&& r, Pred pred, Proj proj = {}); } // merge template<class InputIter1, class InputIter2, class OutputIter> constexpr OutputIter merge(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result); template<class InputIter1, class InputIter2, class OutputIter, class Compare> constexpr OutputIter merge(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result, Compare comp); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter> ForwardIter merge(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter, class Compare> ForwardIter merge(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result, Compare comp); namespace ranges { template<class I1, class I2, class O> using merge_result = in_in_out_result<I1, I2, O>; template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<I1, I2, O, Comp, Proj1, Proj2> constexpr merge_result<I1, I2, O> merge(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2> constexpr merge_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O> merge(R1&& r1, R2&& r2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } template<class BidirectionalIter> void inplace_merge(BidirectionalIter first, BidirectionalIter middle, BidirectionalIter last); template<class BidirectionalIter, class Compare> void inplace_merge(BidirectionalIter first, BidirectionalIter middle, BidirectionalIter last, Compare comp); template<class ExecutionPolicy, class BidirectionalIter> void inplace_merge(ExecutionPolicy&& exec, BidirectionalIter first, BidirectionalIter middle, BidirectionalIter last); template<class ExecutionPolicy, class BidirectionalIter, class Compare> void inplace_merge(ExecutionPolicy&& exec, BidirectionalIter first, BidirectionalIter middle, BidirectionalIter last, Compare comp); namespace ranges { template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> I inplace_merge(I first, I middle, S last, Comp comp = {}, Proj proj = {}); template<bidirectional_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> borrowed_iterator_t<R> inplace_merge(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {}); } // set operations template<class InputIter1, class InputIter2> constexpr bool includes(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2); template<class InputIter1, class InputIter2, class Compare> constexpr bool includes(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, Compare comp); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> bool includes(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class Compare> bool includes(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, Compare comp); namespace ranges { template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity, indirect_strict_weak_order <projected<I1, Proj1>, projected<I2, Proj2>> Comp = ranges::less> constexpr bool includes(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Proj1 = identity, class Proj2 = identity, indirect_strict_weak_order <projected<iterator_t<R1>, Proj1>, projected<iterator_t<R2>, Proj2>> Comp = ranges::less> constexpr bool includes(R1&& r1, R2&& r2, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } template<class InputIter1, class InputIter2, class OutputIter> constexpr OutputIter set_union(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result); template<class InputIter1, class InputIter2, class OutputIter, class Compare> constexpr OutputIter set_union(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result, Compare comp); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter> ForwardIter set_union(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter, class Compare> ForwardIter set_union(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result, Compare comp); namespace ranges { template<class I1, class I2, class O> using set_union_result = in_in_out_result<I1, I2, O>; template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<I1, I2, O, Comp, Proj1, Proj2> constexpr set_union_result<I1, I2, O> set_union(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2> constexpr set_union_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O> set_union(R1&& r1, R2&& r2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } template<class InputIter1, class InputIter2, class OutputIter> constexpr OutputIter set_intersection(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result); template<class InputIter1, class InputIter2, class OutputIter, class Compare> constexpr OutputIter set_intersection(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result, Compare comp); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter> ForwardIter set_intersection(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter, class Compare> ForwardIter set_intersection(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result, Compare comp); namespace ranges { template<class I1, class I2, class O> using set_intersection_result = in_in_out_result<I1, I2, O>; template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<I1, I2, O, Comp, Proj1, Proj2> constexpr set_intersection_result<I1, I2, O> set_intersection(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2> constexpr set_intersection_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O> set_intersection(R1&& r1, R2&& r2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } template<class InputIter1, class InputIter2, class OutputIter> constexpr OutputIter set_difference(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result); template<class InputIter1, class InputIter2, class OutputIter, class Compare> constexpr OutputIter set_difference(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result, Compare comp); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter> ForwardIter set_difference(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter, class Compare> ForwardIter set_difference(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result, Compare comp); namespace ranges { template<class I, class O> using set_difference_result = in_out_result<I, O>; template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<I1, I2, O, Comp, Proj1, Proj2> constexpr set_difference_result<I1, O> set_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2> constexpr set_difference_result<borrowed_iterator_t<R1>, O> set_difference(R1&& r1, R2&& r2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } template<class InputIter1, class InputIter2, class OutputIter> constexpr OutputIter set_symmetric_difference(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result); template<class InputIter1, class InputIter2, class OutputIter, class Compare> constexpr OutputIter set_symmetric_difference(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, OutputIter result, Compare comp); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter> ForwardIter set_symmetric_difference(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class ForwardIter, class Compare> ForwardIter set_symmetric_difference(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, ForwardIter result, Compare comp); namespace ranges { template<class I1, class I2, class O> using set_symmetric_difference_result = in_in_out_result<I1, I2, O>; template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<I1, I2, O, Comp, Proj1, Proj2> constexpr set_symmetric_difference_result<I1, I2, O> set_symmetric_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity> requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2> constexpr set_symmetric_difference_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O> set_symmetric_difference(R1&& r1, R2&& r2, O result, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } // heap operations template<class RandomAccessIter> constexpr void push_heap(RandomAccessIter first, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr void push_heap(RandomAccessIter first, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr I push_heap(I first, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr borrowed_iterator_t<R> push_heap(R&& r, Comp comp = {}, Proj proj = {}); } template<class RandomAccessIter> constexpr void pop_heap(RandomAccessIter first, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr void pop_heap(RandomAccessIter first, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr I pop_heap(I first, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr borrowed_iterator_t<R> pop_heap(R&& r, Comp comp = {}, Proj proj = {}); } template<class RandomAccessIter> constexpr void make_heap(RandomAccessIter first, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr void make_heap(RandomAccessIter first, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr I make_heap(I first, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr borrowed_iterator_t<R> make_heap(R&& r, Comp comp = {}, Proj proj = {}); } template<class RandomAccessIter> constexpr void sort_heap(RandomAccessIter first, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr void sort_heap(RandomAccessIter first, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr I sort_heap(I first, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr borrowed_iterator_t<R> sort_heap(R&& r, Comp comp = {}, Proj proj = {}); } template<class RandomAccessIter> constexpr bool is_heap(RandomAccessIter first, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr bool is_heap(RandomAccessIter first, RandomAccessIter last, Compare comp); template<class ExecutionPolicy, class RandomAccessIter> bool is_heap(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter last); template<class ExecutionPolicy, class RandomAccessIter, class Compare> bool is_heap(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Proj = identity, indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less> constexpr bool is_heap(I first, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr bool is_heap(R&& r, Comp comp = {}, Proj proj = {}); } template<class RandomAccessIter> constexpr RandomAccessIter is_heap_until(RandomAccessIter first, RandomAccessIter last); template<class RandomAccessIter, class Compare> constexpr RandomAccessIter is_heap_until(RandomAccessIter first, RandomAccessIter last, Compare comp); template<class ExecutionPolicy, class RandomAccessIter> RandomAccessIter is_heap_until(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter last); template<class ExecutionPolicy, class RandomAccessIter, class Compare> RandomAccessIter is_heap_until(ExecutionPolicy&& exec, RandomAccessIter first, RandomAccessIter last, Compare comp); namespace ranges { template<random_access_iterator I, sentinel_for<I> S, class Proj = identity, indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less> constexpr I is_heap_until(I first, S last, Comp comp = {}, Proj proj = {}); template<random_access_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr borrowed_iterator_t<R> is_heap_until(R&& r, Comp comp = {}, Proj proj = {}); } // minimum and maximum template<class T> constexpr const T& min(const T& a, const T& b); template<class T, class Compare> constexpr const T& min(const T& a, const T& b, Compare comp); template<class T> constexpr T min(initializer_list<T> t); template<class T, class Compare> constexpr T min(initializer_list<T> t, Compare comp); namespace ranges { template<class T, class Proj = identity, indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less> constexpr const T& min(const T& a, const T& b, Comp comp = {}, Proj proj = {}); template<copyable T, class Proj = identity, indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less> constexpr T min(initializer_list<T> r, Comp comp = {}, Proj proj = {}); template<input_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*> constexpr range_value_t<R> min(R&& r, Comp comp = {}, Proj proj = {}); } template<class T> constexpr const T& max(const T& a, const T& b); template<class T, class Compare> constexpr const T& max(const T& a, const T& b, Compare comp); template<class T> constexpr T max(initializer_list<T> t); template<class T, class Compare> constexpr T max(initializer_list<T> t, Compare comp); namespace ranges { template<class T, class Proj = identity, indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less> constexpr const T& max(const T& a, const T& b, Comp comp = {}, Proj proj = {}); template<copyable T, class Proj = identity, indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less> constexpr T max(initializer_list<T> r, Comp comp = {}, Proj proj = {}); template<input_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*> constexpr range_value_t<R> max(R&& r, Comp comp = {}, Proj proj = {}); } template<class T> constexpr pair<const T&, const T&> minmax(const T& a, const T& b); template<class T, class Compare> constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp); template<class T> constexpr pair<T, T> minmax(initializer_list<T> t); template<class T, class Compare> constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp); namespace ranges { template<class T> using minmax_result = min_max_result<T>; template<class T, class Proj = identity, indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less> constexpr minmax_result<const T&> minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {}); template<copyable T, class Proj = identity, indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less> constexpr minmax_result<T> minmax(initializer_list<T> r, Comp comp = {}, Proj proj = {}); template<input_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*> constexpr minmax_result<range_value_t<R>> minmax(R&& r, Comp comp = {}, Proj proj = {}); } template<class ForwardIter> constexpr ForwardIter min_element(ForwardIter first, ForwardIter last); template<class ForwardIter, class Compare> constexpr ForwardIter min_element(ForwardIter first, ForwardIter last, Compare comp); template<class ExecutionPolicy, class ForwardIter> ForwardIter min_element(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last); template<class ExecutionPolicy, class ForwardIter, class Compare> ForwardIter min_element(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Compare comp); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less> constexpr I min_element(I first, S last, Comp comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr borrowed_iterator_t<R> min_element(R&& r, Comp comp = {}, Proj proj = {}); } template<class ForwardIter> constexpr ForwardIter max_element(ForwardIter first, ForwardIter last); template<class ForwardIter, class Compare> constexpr ForwardIter max_element(ForwardIter first, ForwardIter last, Compare comp); template<class ExecutionPolicy, class ForwardIter> ForwardIter max_element(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last); template<class ExecutionPolicy, class ForwardIter, class Compare> ForwardIter max_element(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Compare comp); namespace ranges { template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less> constexpr I max_element(I first, S last, Comp comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr borrowed_iterator_t<R> max_element(R&& r, Comp comp = {}, Proj proj = {}); } template<class ForwardIter> constexpr pair<ForwardIter, ForwardIter> minmax_element(ForwardIter first, ForwardIter last); template<class ForwardIter, class Compare> constexpr pair<ForwardIter, ForwardIter> minmax_element(ForwardIter first, ForwardIter last, Compare comp); template<class ExecutionPolicy, class ForwardIter> pair<ForwardIter, ForwardIter> minmax_element(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last); template<class ExecutionPolicy, class ForwardIter, class Compare> pair<ForwardIter, ForwardIter> minmax_element(ExecutionPolicy&& exec, ForwardIter first, ForwardIter last, Compare comp); namespace ranges { template<class I> using minmax_element_result = min_max_result<I>; template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less> constexpr minmax_element_result<I> minmax_element(I first, S last, Comp comp = {}, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_strict_weak_order <projected<iterator_t<R>, Proj>> Comp = ranges::less> constexpr minmax_element_result<borrowed_iterator_t<R>> minmax_element(R&& r, Comp comp = {}, Proj proj = {}); } // bounded value template<class T> constexpr const T& clamp(const T& v, const T& lo, const T& hi); template<class T, class Compare> constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare comp); namespace ranges { template<class T, class Proj = identity, indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less> constexpr const T& clamp(const T& v, const T& lo, const T& hi, Comp comp = {}, Proj proj = {}); } // lexicographical comparison template<class InputIter1, class InputIter2> constexpr bool lexicographical_compare(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2); template<class InputIter1, class InputIter2, class Compare> constexpr bool lexicographical_compare(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, Compare comp); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2> bool lexicographical_compare(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2); template<class ExecutionPolicy, class ForwardIter1, class ForwardIter2, class Compare> bool lexicographical_compare(ExecutionPolicy&& exec, ForwardIter1 first1, ForwardIter1 last1, ForwardIter2 first2, ForwardIter2 last2, Compare comp); namespace ranges { template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity, indirect_strict_weak_order <projected<I1, Proj1>, projected<I2, Proj2>> Comp = ranges::less> constexpr bool lexicographical_compare(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Proj1 = identity, class Proj2 = identity, indirect_strict_weak_order <projected<iterator_t<R1>, Proj1>, projected<iterator_t<R2>, Proj2>> Comp = ranges::less> constexpr bool lexicographical_compare(R1&& r1, R2&& r2, Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); } // three-way comparison algorithms template<class InputIter1, class InputIter2, class Cmp> constexpr auto lexicographical_compare_three_way(InputIter1 b1, InputIter1 e1, InputIter2 b2, InputIter2 e2, Cmp comp) -> decltype(comp(*b1, *b2)); template<class InputIter1, class InputIter2> constexpr auto lexicographical_compare_three_way(InputIter1 b1, InputIter1 e1, InputIter2 b2, InputIter2 e2); // permutations template<class BidirectionalIter> constexpr bool next_permutation(BidirectionalIter first, BidirectionalIter last); template<class BidirectionalIter, class Compare> constexpr bool next_permutation(BidirectionalIter first, BidirectionalIter last, Compare comp); namespace ranges { template<class I> using next_permutation_result = in_found_result<I>; template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr next_permutation_result<I> next_permutation(I first, S last, Comp comp = {}, Proj proj = {}); template<bidirectional_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr next_permutation_result<borrowed_iterator_t<R>> next_permutation(R&& r, Comp comp = {}, Proj proj = {}); } template<class BidirectionalIter> constexpr bool prev_permutation(BidirectionalIter first, BidirectionalIter last); template<class BidirectionalIter, class Compare> constexpr bool prev_permutation(BidirectionalIter first, BidirectionalIter last, Compare comp); namespace ranges { template<class I> using prev_permutation_result = in_found_result<I>; template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less, class Proj = identity> requires sortable<I, Comp, Proj> constexpr prev_permutation_result<I> prev_permutation(I first, S last, Comp comp = {}, Proj proj = {}); template<bidirectional_range R, class Comp = ranges::less, class Proj = identity> requires sortable<iterator_t<R>, Comp, Proj> constexpr prev_permutation_result<borrowed_iterator_t<R>> prev_permutation(R&& r, Comp comp = {}, Proj proj = {}); } }
[edit] Class template std::ranges::in_fun_result
namespace std::ranges { template<class I, class F> struct in_fun_result { [[no_unique_address]] I in; [[no_unique_address]] F fun; template<class I2, class F2> requires convertible_to<const I&, I2> && convertible_to<const F&, F2> constexpr operator in_fun_result<I2, F2>() const & { return {in, fun}; } template<class I2, class F2> requires convertible_to<I, I2> && convertible_to<F, F2> constexpr operator in_fun_result<I2, F2>() && { return {std::move(in), std::move(fun)}; } }; }
[edit] Class template std::ranges::in_in_result
namespace std::ranges { template<class I1, class I2> struct in_in_result { [[no_unique_address]] I1 in1; [[no_unique_address]] I2 in2; template<class II1, class II2> requires convertible_to<const I1&, II1> && convertible_to<const I2&, II2> constexpr operator in_in_result<II1, II2>() const & { return {in1, in2}; } template<class II1, class II2> requires convertible_to<I1, II1> && convertible_to<I2, II2> constexpr operator in_in_result<II1, II2>() && { return {std::move(in1), std::move(in2)}; } }; }
[edit] Class template std::ranges::in_out_result
namespace std::ranges { template<class I, class O> struct in_out_result { [[no_unique_address]] I in; [[no_unique_address]] O out; template<class I2, class O2> requires convertible_to<const I&, I2> && convertible_to<const O&, O2> constexpr operator in_out_result<I2, O2>() const & { return {in, out}; } template<class I2, class O2> requires convertible_to<I, I2> && convertible_to<O, O2> constexpr operator in_out_result<I2, O2>() && { return {std::move(in), std::move(out)}; } }; }
[edit] Class template std::ranges::in_in_out_result
namespace std::ranges { template<class I1, class I2, class O> struct in_in_out_result { [[no_unique_address]] I1 in1; [[no_unique_address]] I2 in2; [[no_unique_address]] O out; template<class II1, class II2, class OO> requires convertible_to<const I1&, II1> && convertible_to<const I2&, II2> && convertible_to<const O&, OO> constexpr operator in_in_out_result<II1, II2, OO>() const & { return {in1, in2, out}; } template<class II1, class II2, class OO> requires convertible_to<I1, II1> && convertible_to<I2, II2> && convertible_to<O, OO> constexpr operator in_in_out_result<II1, II2, OO>() && { return {std::move(in1), std::move(in2), std::move(out)}; } }; }
[edit] Class template std::ranges::in_out_out_result
namespace std::ranges { template<class I, class O1, class O2> struct in_out_out_result { [[no_unique_address]] I in; [[no_unique_address]] O1 out1; [[no_unique_address]] O2 out2; template<class II, class OO1, class OO2> requires convertible_to<const I&, II> && convertible_to<const O1&, OO1> && convertible_to<const O2&, OO2> constexpr operator in_out_out_result<II, OO1, OO2>() const & { return {in, out1, out2}; } template<class II, class OO1, class OO2> requires convertible_to<I, II> && convertible_to<O1, OO1> && convertible_to<O2, OO2> constexpr operator in_out_out_result<II, OO1, OO2>() && { return {std::move(in), std::move(out1), std::move(out2)}; } }; }
[edit] Class template std::ranges::min_max_result
namespace std::ranges { template<class T> struct min_max_result { [[no_unique_address]] T min; [[no_unique_address]] T max; template<class T2> requires convertible_to<const T&, T2> constexpr operator min_max_result<T2>() const & { return {min, max}; } template<class T2> requires convertible_to<T, T2> constexpr operator min_max_result<T2>() && { return {std::move(min), std::move(max)}; } }; }
[edit] Class template std::ranges::in_found_result
namespace std::ranges { template<class I> struct in_found_result { [[no_unique_address]] I in; bool found; template<class I2> requires convertible_to<const I&, I2> constexpr operator in_found_result<I2>() const & { return {in, found}; } template<class I2> requires convertible_to<I, I2> constexpr operator in_found_result<I2>() && { return {std::move(in), found}; } }; }
[edit] Class template std::ranges::in_value_result
namespace std::ranges { template<class I, class T> struct in_value_result { [[no_unique_address]] I in; [[no_unique_address]] T value; template<class I2, class T2> requires convertible_to<const I&, I2> && convertible_to<const T&, T2> constexpr operator in_value_result<I2, T2>() const & { return {in, value}; } template<class I2, class T2> requires convertible_to<I, I2> && convertible_to<T, T2> constexpr operator in_value_result<I2, T2>() && { return {std::move(in), std::move(value)}; } }; }
[edit] Class template std::ranges::out_value_result
namespace std::ranges { template<class O, class T> struct out_value_result { [[no_unique_address]] O out; [[no_unique_address]] T value; template<class O2, class T2> requires convertible_to<const O&, O2> && convertible_to<const T&, T2> constexpr operator out_value_result<O2, T2>() const & { return {out, value}; } template<class O2, class T2> requires convertible_to<O, O2> && convertible_to<T, T2> constexpr operator out_value_result<O2, T2>() && { return {std::move(out), std::move(value)}; } }; }