Namespaces
Variants
Views
Actions

std::norm(std::complex)

From cppreference.com
< cpp‎ | numeric‎ | complex
 
 
 
 
Defined in header <complex>
(1)
template< class T >
T norm( const std::complex<T>& z );
(until C++20)
template< class T >
constexpr T norm( const std::complex<T>& z );
(since C++20)
Additional overloads (since C++11)
Defined in header <complex>
(A)
float       norm( float f );

double      norm( double f );

long double norm( long double f );
(until C++20)
constexpr float       norm( float f );

constexpr double      norm( double f );

constexpr long double norm( long double f );
(since C++20)
(until C++23)
template< class FloatingPoint >
constexpr FloatingPoint norm( FloatingPoint f );
(since C++23)
(B)
template< class Integer >
double norm( Integer i );
(until C++20)
template< class Integer >
constexpr double norm( Integer i );
(since C++20)
1) Returns the squared magnitude of the complex number z.
A,B) Additional overloads are provided for all integer and floating-point types, which are treated as complex numbers with zero imaginary component.
(since C++11)

Contents

[edit] Parameters

z - complex value
f - floating-point value
i - integer value

[edit] Return value

1) The squared magnitude of z.
A) The square of f.
B) The square of i.

[edit] Notes

The norm calculated by this function is also known as field norm or absolute square.

The Euclidean norm of a complex number is provided by std::abs, which is more costly to compute. In some situations, it may be replaced by std::norm, for example, if abs(z1) > abs(z2) then norm(z1) > norm(z2).

The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num:

  • If num has a standard(until C++23) floating-point type T, then std::norm(num) has the same effect as std::norm(std::complex<T>(num)).
  • Otherwise, if num has an integer type, then std::norm(num) has the same effect as std::norm(std::complex<double>(num)).

[edit] Example

#include <cassert>
#include <complex>
#include <iostream>
 
int main()
{
    constexpr std::complex<double> z {3.0, 4.0};
    static_assert(std::norm(z) == (z.real() * z.real() + z.imag() * z.imag()));
    static_assert(std::norm(z) == (z * std::conj(z)));
           assert(std::norm(z) == (std::abs(z) * std::abs(z)));
    std::cout << "std::norm(" << z << ") = " << std::norm(z) << '\n';
}

Output:

std::norm((3,4)) = 25

[edit] See also

returns the magnitude of a complex number
(function template) [edit]
returns the complex conjugate
(function template) [edit]
constructs a complex number from magnitude and phase angle
(function template) [edit]