Difference between revisions of "c/numeric/complex"
m (-duplicate "(C11)") |
m |
||
Line 2: | Line 2: | ||
{{c/numeric/complex/navbar}} | {{c/numeric/complex/navbar}} | ||
− | {{ | + | {{rrev|since=c11| |
− | + | ||
If the macro constant {{tt|__STDC_NO_COMPLEX__}} is defined by the implementation, the complex types, the header {{tt|<complex.h>}} and all of the names listed here are not provided.}} | If the macro constant {{tt|__STDC_NO_COMPLEX__}} is defined by the implementation, the complex types, the header {{tt|<complex.h>}} and all of the names listed here are not provided.}} | ||
− | |||
The C programming language, as of C99, supports complex number math with the three built-in types {{tt|double _Complex}}, {{tt|float _Complex}}, and {{tt|long double _Complex}} (see [[c/keyword/_Complex|_Complex]]). When the header {{tt|<complex.h>}} is included, the three complex number types are also accessible as {{tt|double complex}}, {{tt|float complex}}, {{tt|long double complex}}. | The C programming language, as of C99, supports complex number math with the three built-in types {{tt|double _Complex}}, {{tt|float _Complex}}, and {{tt|long double _Complex}} (see [[c/keyword/_Complex|_Complex]]). When the header {{tt|<complex.h>}} is included, the three complex number types are also accessible as {{tt|double complex}}, {{tt|float complex}}, {{tt|long double complex}}. | ||
Line 13: | Line 11: | ||
Standard arithmetic operators {{c|+, -, *, /}} can be used with real, complex, and imaginary types in any combination. <!--TODO: link to the arithmetic operators, don't forget cx limited range and the details from G.5.1 and G.5.2. in their description --> | Standard arithmetic operators {{c|+, -, *, /}} can be used with real, complex, and imaginary types in any combination. <!--TODO: link to the arithmetic operators, don't forget cx limited range and the details from G.5.1 and G.5.2. in their description --> | ||
− | {{ | + | {{rrev multi|since1=c99|rev1= |
− | + | ||
A compiler that defines {{c|__STDC_IEC_559_COMPLEX__}} is recommended, but not required to support imaginary numbers. POSIX recommends checking if the macro {{c|_Imaginary_I}} is defined to identify imaginary number support. | A compiler that defines {{c|__STDC_IEC_559_COMPLEX__}} is recommended, but not required to support imaginary numbers. POSIX recommends checking if the macro {{c|_Imaginary_I}} is defined to identify imaginary number support. | ||
− | + | |since2=c11|rev2= | |
− | + | ||
Imaginary numbers are supported if {{c|__STDC_IEC_559_COMPLEX__}} is defined. | Imaginary numbers are supported if {{c|__STDC_IEC_559_COMPLEX__}} is defined. | ||
}} | }} | ||
− | |||
{{dsc begin}} | {{dsc begin}} | ||
Line 133: | Line 128: | ||
{{dsc end}} | {{dsc end}} | ||
− | + | {{langlinks|ar|cs|de|es|fr|it|ja|ko|pl|pt|ru|tr|zh}} | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Revision as of 06:03, 18 May 2018
If the macro constant |
(since C11) |
The C programming language, as of C99, supports complex number math with the three built-in types double _Complex
, float _Complex
, and long double _Complex
(see _Complex). When the header <complex.h>
is included, the three complex number types are also accessible as double complex
, float complex
, long double complex
.
In addition to the complex types, the three imaginary types may be supported: double _Imaginary
, float _Imaginary
, and long double _Imaginary
(see _Imaginary). When the header <complex.h>
is included, the three imaginary types are also accessible as double imaginary
, float imaginary
, and long double imaginary
.
Standard arithmetic operators +, -, *, / can be used with real, complex, and imaginary types in any combination.
A compiler that defines __STDC_IEC_559_COMPLEX__ is recommended, but not required to support imaginary numbers. POSIX recommends checking if the macro _Imaginary_I is defined to identify imaginary number support. |
(since C99) (until C11) |
Imaginary numbers are supported if __STDC_IEC_559_COMPLEX__ is defined. |
(since C11) |
Defined in header
<complex.h> | ||
Types | ||
(C99) |
imaginary type macro (keyword macro) | |
(C99) |
complex type macro (keyword macro) | |
The imaginary constant | ||
(C99) |
the imaginary unit constant i (macro constant) | |
(C99) |
the complex unit constant i (macro constant) | |
(C99) |
the complex or imaginary unit constant i (macro constant) | |
Manipulation | ||
(C11)(C11)(C11) |
constructs a complex number from real and imaginary parts (function macro) | |
(C99)(C99)(C99) |
computes the real part of a complex number (function) | |
(C99)(C99)(C99) |
computes the imaginary part a complex number (function) | |
(C99)(C99)(C99) |
computes the magnitude of a complex number (function) | |
(C99)(C99)(C99) |
computes the phase angle of a complex number (function) | |
(C99)(C99)(C99) |
computes the complex conjugate (function) | |
(C99)(C99)(C99) |
computes the projection on Riemann sphere (function) | |
Exponential functions | ||
(C99)(C99)(C99) |
computes the complex base-e exponential (function) | |
(C99)(C99)(C99) |
computes the complex natural logarithm (function) | |
Power functions | ||
(C99)(C99)(C99) |
computes the complex power function (function) | |
(C99)(C99)(C99) |
computes the complex square root (function) | |
Trigonometric functions | ||
(C99)(C99)(C99) |
computes the complex sine (function) | |
(C99)(C99)(C99) |
computes the complex cosine (function) | |
(C99)(C99)(C99) |
computes the complex tangent (function) | |
(C99)(C99)(C99) |
computes the complex arc sine (function) | |
(C99)(C99)(C99) |
computes the complex arc cosine (function) | |
(C99)(C99)(C99) |
computes the complex arc tangent (function) | |
Hyperbolic functions | ||
(C99)(C99)(C99) |
computes the complex hyperbolic sine (function) | |
(C99)(C99)(C99) |
computes the complex hyperbolic cosine (function) | |
(C99)(C99)(C99) |
computes the complex hyperbolic tangent (function) | |
(C99)(C99)(C99) |
computes the complex arc hyperbolic sine (function) | |
(C99)(C99)(C99) |
computes the complex arc hyperbolic cosine (function) | |
(C99)(C99)(C99) |
computes the complex arc hyperbolic tangent (function) |
Notes
The following function names are reserved for future addition to complex.h
and are not available for use in the programs that include that header: cerf
, cerfc
, cexp2
, cexpm1
, clog10
, clog1p
, clog2
, clgamma
, and ctgamma
, along with their -f and -l suffixed variants.
Although the C standard names the inverse hyperbolics with "complex arc hyperbolic sine" etc., the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct names are "complex inverse hyperbolic sine" etc. Some authors use "complex area hyperbolic sine" etc.
A complex or imaginary number is infinite if one of its components is infinite, even if the other component is NaN.
A complex or imaginary number is finite if both components are neither infinities nor NaNs.
A complex or imaginary number is a zero if both components are positive or negative zeroes.
Example
#include <stdio.h> #include <complex.h> #include <tgmath.h> int main(void) { double complex z1 = I * I; // imaginary unit squared printf("I * I = %.1f%+.1fi\n", creal(z1), cimag(z1)); double complex z2 = pow(I, 2); // imaginary unit squared printf("pow(I, 2) = %.1f%+.1fi\n", creal(z2), cimag(z2)); double PI = acos(-1); double complex z3 = exp(I * PI); // Euler's formula printf("exp(I*PI) = %.1f%+.1fi\n", creal(z3), cimag(z3)); double complex z4 = 1+2*I, z5 = 1-2*I; // conjugates printf("(1+2i)*(1-2i) = %.1f%+.1fi\n", creal(z4*z5), cimag(z4*z5)); }
Output:
I * I = -1.0+0.0i pow(I, 2) = -1.0+0.0i exp(I*PI) = -1.0+0.0i (1+2i)*(1-2i) = 5.0+0.0i
References
- C11 standard (ISO/IEC 9899:2011):
- 6.10.8.3/1/2 __STDC_NO_COMPLEX__ (p: 177)
- 6.10.8.3/1/2 __STDC_IEC_559_COMPLEX__ (p: 177)
- 7.3 Complex arithmetic <complex.h> (p: 188-199)
- 7.3.1/2 __STDC_NO_COMPLEX__ (p: 188)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- 7.31.1 Complex arithmetic <complex.h> (p: 455)
- B.2 Complex <complex.h> (p: 475-477)
- Annex G (normative) IEC 60559-compatible complex arithmetic (p: 532-545)
- G.1/1 __STDC_IEC_559_COMPLEX__ (p: 532)
- C99 standard (ISO/IEC 9899:1999):
- 6.10.8/2 __STDC_IEC_559_COMPLEX__ (p: 161)
- 7.3 Complex arithmetic <complex.h> (p: 170-180)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- 7.26.1 Complex arithmetic <complex.h> (p: 401)
- B.2 Complex <complex.h> (p: 419-420)
- Annex G (informative) IEC 60559-compatible complex arithmetic (p: 467-480)
- G.1/1 __STDC_IEC_559_COMPLEX__ (p: 467)
See also
C++ documentation for Complex number arithmetic
|