Difference between revisions of "cpp/container/priority queue"
m (→Example: fix the output.) |
m (→Example: revamped: unlike std::stack/queue there is no point to print priority_queue's internals (heap-ordered elements).) |
||
Line 91: | Line 91: | ||
{{example | {{example | ||
|code= | |code= | ||
− | |||
#include <functional> | #include <functional> | ||
#include <iostream> | #include <iostream> | ||
#include <queue> | #include <queue> | ||
− | |||
#include <string_view> | #include <string_view> | ||
#include <vector> | #include <vector> | ||
template<typename T> | template<typename T> | ||
− | void | + | void pop_println(std::string_view rem, T& pq) |
{ | { | ||
− | std::cout << | + | std::cout << rem << ": "; |
− | for ( | + | for (; !pq.empty(); pq.pop()) |
− | std::cout << | + | std::cout << pq.top() << ' '; |
std::cout << '\n'; | std::cout << '\n'; | ||
} | } | ||
− | template<typename | + | template<typename T> |
− | + | void println(std::string_view rem, const T& v) | |
− | void | + | |
{ | { | ||
− | + | std::cout << rem << ": "; | |
− | + | for (const auto& e : v) | |
− | + | std::cout << e << ' '; | |
− | + | std::cout << '\n'; | |
− | + | ||
− | + | ||
} | } | ||
Line 123: | Line 118: | ||
{ | { | ||
const auto data = {1, 8, 5, 6, 3, 4, 0, 9, 7, 2}; | const auto data = {1, 8, 5, 6, 3, 4, 0, 9, 7, 2}; | ||
− | + | println("data", data); | |
− | std::priority_queue<int> | + | std::priority_queue<int> max_priority_queue; |
+ | |||
+ | // Fill the priority queue. | ||
for (int n : data) | for (int n : data) | ||
− | + | max_priority_queue.push(n); | |
− | + | pop_println("max_priority_queue", max_priority_queue); | |
− | + | // std::greater<int> makes the max priority queue act as a min priority queue. | |
− | // std::greater<int> makes the max priority queue act as a min priority queue | + | |
std::priority_queue<int, std::vector<int>, std::greater<int>> | std::priority_queue<int, std::vector<int>, std::greater<int>> | ||
− | + | min_priority_queue1(data.begin(), data.end()); | |
− | + | pop_println("min_priority_queue1", min_priority_queue1); | |
− | // Second way to define a min priority queue | + | // Second way to define a min priority queue. |
− | std::priority_queue | + | std::priority_queue min_priority_queue2(data.begin(), data.end(), std::greater<int>()); |
− | + | pop_println("min_priority_queue2", min_priority_queue2); | |
// Using a custom function object to compare elements. | // Using a custom function object to compare elements. | ||
Line 148: | Line 144: | ||
bool operator()(const int l, const int r) const { return l > r; } | bool operator()(const int l, const int r) const { return l > r; } | ||
} customLess; | } customLess; | ||
− | |||
− | + | std::priority_queue custom_priority_queue(data.begin(), data.end(), customLess); | |
+ | |||
+ | pop_println("custom_priority_queue", custom_priority_queue); | ||
// Using lambda to compare elements. | // Using lambda to compare elements. | ||
auto cmp = [](int left, int right) { return (left ^ 1) < (right ^ 1); }; | auto cmp = [](int left, int right) { return (left ^ 1) < (right ^ 1); }; | ||
− | std::priority_queue<int, std::vector<int>, decltype(cmp)> | + | std::priority_queue<int, std::vector<int>, decltype(cmp)> lambda_priority_queue(cmp); |
for (int n : data) | for (int n : data) | ||
− | + | lambda_priority_queue.push(n); | |
− | + | pop_println("lambda_priority_queue", lambda_priority_queue); | |
} | } | ||
|output= | |output= | ||
− | data: | + | data: 1 8 5 6 3 4 0 9 7 2 |
− | + | max_priority_queue: 9 8 7 6 5 4 3 2 1 0 | |
− | + | min_priority_queue1: 0 1 2 3 4 5 6 7 8 9 | |
− | + | min_priority_queue2: 0 1 2 3 4 5 6 7 8 9 | |
− | + | custom_priority_queue: 0 1 2 3 4 5 6 7 8 9 | |
− | + | lambda_priority_queue: 8 9 6 7 4 5 2 3 0 1 | |
}} | }} | ||
Revision as of 23:23, 12 April 2024
Defined in header <queue>
|
||
template< class T, |
||
The priority queue is a container adaptor that provides constant time lookup of the largest (by default) element, at the expense of logarithmic insertion and extraction.
A user-provided Compare
can be supplied to change the ordering, e.g. using std::greater<T> would cause the smallest element to appear as the top().
Working with a priority_queue
is similar to managing a heap in some random access container, with the benefit of not being able to accidentally invalidate the heap.
Contents |
Template parameters
T | - | The type of the stored elements. The behavior is undefined if T is not the same type as Container::value_type .
|
Container | - | The type of the underlying container to use to store the elements. The container must satisfy the requirements of SequenceContainer, and its iterators must satisfy the requirements of LegacyRandomAccessIterator. Additionally, it must provide the following functions with the usual semantics:
The standard containers std::vector (including |
Compare | - | A Compare type providing a strict weak ordering.
Note that the Compare parameter is defined such that it returns true if its first argument comes before its second argument in a weak ordering. But because the priority queue outputs largest elements first, the elements that "come before" are actually output last. That is, the front of the queue contains the "last" element according to the weak ordering imposed by Compare. |
Member types
Member type | Definition |
container_type
|
Container
|
value_compare
|
Compare
|
value_type
|
Container::value_type
|
size_type
|
Container::size_type |
reference
|
Container::reference
|
const_reference
|
Container::const_reference
|
Member objects
Member name | Definition |
Container c |
the underlying container (protected member object) |
Compare comp |
the comparison function object (protected member object) |
Member functions
constructs the priority_queue (public member function) | |
destructs the priority_queue (public member function) | |
assigns values to the container adaptor (public member function) | |
Element access | |
accesses the top element (public member function) | |
Capacity | |
checks whether the container adaptor is empty (public member function) | |
returns the number of elements (public member function) | |
Modifiers | |
inserts element and sorts the underlying container (public member function) | |
(C++23) |
inserts a range of elements and sorts the underlying container (public member function) |
(C++11) |
constructs element in-place and sorts the underlying container (public member function) |
removes the top element (public member function) | |
(C++11) |
swaps the contents (public member function) |
Non-member functions
specializes the std::swap algorithm (function template) |
Helper classes
specializes the std::uses_allocator type trait (class template specialization) | |
formatting support for std::priority_queue (class template specialization) |
Deduction guides |
(since C++17) |
Notes
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_containers_ranges |
202202L | (C++23) | Ranges-aware construction and insertion for containers |
Example
#include <functional> #include <iostream> #include <queue> #include <string_view> #include <vector> template<typename T> void pop_println(std::string_view rem, T& pq) { std::cout << rem << ": "; for (; !pq.empty(); pq.pop()) std::cout << pq.top() << ' '; std::cout << '\n'; } template<typename T> void println(std::string_view rem, const T& v) { std::cout << rem << ": "; for (const auto& e : v) std::cout << e << ' '; std::cout << '\n'; } int main() { const auto data = {1, 8, 5, 6, 3, 4, 0, 9, 7, 2}; println("data", data); std::priority_queue<int> max_priority_queue; // Fill the priority queue. for (int n : data) max_priority_queue.push(n); pop_println("max_priority_queue", max_priority_queue); // std::greater<int> makes the max priority queue act as a min priority queue. std::priority_queue<int, std::vector<int>, std::greater<int>> min_priority_queue1(data.begin(), data.end()); pop_println("min_priority_queue1", min_priority_queue1); // Second way to define a min priority queue. std::priority_queue min_priority_queue2(data.begin(), data.end(), std::greater<int>()); pop_println("min_priority_queue2", min_priority_queue2); // Using a custom function object to compare elements. struct { bool operator()(const int l, const int r) const { return l > r; } } customLess; std::priority_queue custom_priority_queue(data.begin(), data.end(), customLess); pop_println("custom_priority_queue", custom_priority_queue); // Using lambda to compare elements. auto cmp = [](int left, int right) { return (left ^ 1) < (right ^ 1); }; std::priority_queue<int, std::vector<int>, decltype(cmp)> lambda_priority_queue(cmp); for (int n : data) lambda_priority_queue.push(n); pop_println("lambda_priority_queue", lambda_priority_queue); }
Output:
data: 1 8 5 6 3 4 0 9 7 2 max_priority_queue: 9 8 7 6 5 4 3 2 1 0 min_priority_queue1: 0 1 2 3 4 5 6 7 8 9 min_priority_queue2: 0 1 2 3 4 5 6 7 8 9 custom_priority_queue: 0 1 2 3 4 5 6 7 8 9 lambda_priority_queue: 8 9 6 7 4 5 2 3 0 1
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 307 | C++98 | Container could not be std::vector<bool>
|
allowed |
LWG 2684 | C++98 | priority_queue takes a comparator but lacked member typedef for it
|
added |
See also
dynamic contiguous array (class template) | |
space-efficient dynamic bitset (class template specialization) | |
double-ended queue (class template) |