Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/container/vector/operator at"

From cppreference.com
< cpp‎ | container‎ | vector
m (r2.7.3) (Robot: Adding de, es, fr, it, ja, pt, ru, zh)
m (Shorten template names. Use {{lc}} where appropriate.)
Line 1: Line 1:
{{page template|cpp/container/operator_at|vector}}
+
{{include page|cpp/container/operator_at|vector}}
  
 
[[de:cpp/container/vector/operator at]]
 
[[de:cpp/container/vector/operator at]]

Revision as of 19:40, 31 May 2013

 
 
 
 
reference operator[]( size_type pos );
(1) (constexpr since C++20)
const_reference operator[]( size_type pos ) const;
(2) (constexpr since C++20)

Returns a reference to the element at specified location pos. No bounds checking is performed.

Contents

Parameters

pos - position of the element to return

Return value

Reference to the requested element.

Complexity

Constant.

Notes

Unlike std::map::operator[], this operator never inserts a new element into the container. Accessing a nonexistent element through this operator is undefined behavior.

Example

The following code uses operator[] to read from and write to a std::vector<int>:

#include <vector>
#include <iostream>
 
int main()
{
    std::vector<int> numbers{2, 4, 6, 8};
 
    std::cout << "Second element: " << numbers[1] << '\n';
 
    numbers[0] = 5;
 
    std::cout << "All numbers:";
    for (auto i : numbers)
        std::cout << ' ' << i;
    std::cout << '\n';
}
 
// Since C++20 std::vector can be used in constexpr context:
#if defined(__cpp_lib_constexpr_vector) and defined(__cpp_consteval)
// Gets the sum of all primes in [0, N) using sieve of Eratosthenes
consteval auto sum_of_all_primes_up_to(unsigned N)
{
    if (N < 2)
        return 0ULL;
 
    std::vector<bool> is_prime(N, true);
    is_prime[0] = is_prime[1] = false;
 
    auto propagate_non_primality = [&](decltype(N) n)
    {
        for (decltype(N) m = n + n; m < is_prime.size(); m += n)
            is_prime[m] = false;
    };
 
    auto sum{0ULL};
    for (decltype(N) n{2}; n != N; ++n)
        if (is_prime[n])
        {
            sum += n;
            propagate_non_primality(n);
        }
 
    return sum;
} //< vector's memory is released here
 
static_assert(sum_of_all_primes_up_to(42) == 0xEE);
static_assert(sum_of_all_primes_up_to(100) == 0x424);
static_assert(sum_of_all_primes_up_to(1001) == 76127);
#endif

Output:

Second element: 4
All numbers: 5 4 6 8

See also

access specified element with bounds checking
(public member function) [edit]